

Test Report issued under the responsibility of:

REPORT VDE-AR-N 4105:2018-11

Generators connected to the low-voltage distribution network – Technical requirements for the connection to and parallel operation with low-voltage distribution networks in junction with

DIN VDE V 0124-100 :2020

Report Reference No	: 200320118GZU-001	
Date of issue	: 25 Aug 2020	
Total number of pages	: 188 pages	
Testing Laboratory	Intertek Testing Services Shen	zhen Ltd. Guangzhou Branch
Address	Room 02, & 101/E201/E301/E 8/F., No. 7-2. Caipin Road, Sci Guangdong, China	401/E501/E601/E701/E801 of Room 01 1- ence City, GETDD, Guangzhou,
Testing location/ address	··· Same as above	
Tested by (name +	Max Gao	Mark
signature):	Engineer	max
Approved by (+ signature)	Jason Fu	$\neg = \mp$
	Technical Team Leader	JESEN TW
Applicant's name	··· Shenzhen SOFAR SOLAR Co	., Ltd.
Address	 401, Building 4, AnTongDa Inc Community, XinAn Street, Bac 	ustrial Park, District 68, XingDong An District, Shenzhen, China
Test specification:		
Standard	··· VDE-AR-N 4105:2018-11	
	DIN VDE V 0124-100 :2020	
Test procedure	··· Type approval	
Non-standard test method	N/A	
Test Report Form No	VDE-AR-N 4105d	
Test Report Form(s) Originator	Intertek Guangzhou	
Master TRF	Dated 2020-06	
This publication may be reproduced in who owner and source of the material. Intertel interpretation of the reproduced material	nole or in part for non-commercial purpos < takes no responsibility for and will not a due to its placement and context.	es as long as Intertek is acknowledged as copyright ssume liability for damages resulting from the reader's
Test item description	AC-coupled Storage Convert	er
Trade Mark	SOFAR SOLAR	
Manufacturer	··· Same as Applicant	
Model/Type reference	··· ME 3000SP	

Page 2 of 188

Rating	Battery Type: Lead-acid, Lithium-ion
	Battery Voltage Range: 42-58Vdc
	Max. Charging Current: 60A
	Max. Discharging Current: 60A
	Max. Charging & Discharging Power: 3000VA
	Nominal Grid Voltage: 230Vac
	Nominal output Voltage (stand-alone): 230Vac
	Max. output Current: 13A
	Nominal Grid frequency: 50Hz
	Power factor: 1 (adjustable +/-0.8)
	Nominal output power: 3000W
	Backup Max. output current: 13.0A
	Backup rated power: 3000W
	Ingress protection: IP65
	Operating Temperature Range: -25 $^\circ C$ - 60 $^\circ C$
	Protective Class: Class I
	Software version: V2.60

Page 3 of 188

Summary of testing:				
Tests performed (name of test and test clause):		Testing location:		
VDE4105 (VDE0124)	Test Description	Intertek Testing Services Shenzhen Ltd. Guangzhou Branch		
5.4.4.1 (5.2.2)	Rapid voltage changes	Room 02, &		
5.4.4.2 (5.2.3)	Flicker	101/E201/E301/E401/E501/E601/E701/E801 of		
5.4.4.3 (5.2.4)	Harmonics and inter-harmonics	Room 01 1-8/F., No. 7-2. Caipin Road, Science City,		
5.4.4.4 (5.2.5)	Commutation notches	GETDD, Guangzhou, Guangdong, China		
5.4.4.8 (5.2.6)	DC current feeding to network			
5.6 (5.3)	Asymmetry calculation for three-phase inverter			
5.7.2.2.2	Measurement of active- and			
(5.4.2)	reactive power ranges			
5.7.2.3 (5.4.8.1)	Reactive power provision below PEmax			
5.7.2.4 (5.4.8.2 & 5.4.8.3)	Method of reactive power provision			
5.7.3 (5.8)	Dynamic Network support			
5.7.4.2 (5.4.3)	Network security management			
5.7.4.3 (5.4.4 & 5.4.5 & 5.4.6 & 5.4.7)	Active power adjustment when over- and under frequency			
6.4 (5.5.1 & 5.5.2 & 5.5.3 & 5.5.4 & 5.5.5 & 5.5.6)	Interface switch (Functional safety)			
6.5.2 (5.5.7 & 5.5.8 & 5.5.9)	Protective function			
6.5.3 (5.5.10)	Islanding detection			
8.3 (5.6)	Connection conditions and synchronisation			

Page 4 of 188

of marking plate		
5	FAR	
AC-Couple	d Storage Conve	rter
Model No:	ME	3000SP
Battery Type	Lead-acid,L	ithium-ion
Battery Voltage Ra	inge	42-58Vdc
Max.Charging Cur	rent	<u>60A</u>
Max.Discharging C	urrent	<u>60A</u>
Max.Charging&Dis	charging Power	_ <u>3000VA</u>
Nominal Grid Volta	ge	_ <u>230Vac</u>
Nominal Output Vo	ltage	_ <u>_230Vac</u>
Max.Output Currer	nt	<u>13A</u>
Nominal Grid Free	luency	_50/60Hz
Power Factor	1(adjusta	able+/-0.8)
Ingress Protection		IP65
Operating Temperature	e Range	<u>25-+60</u> °C
Protective Class		Class I
Manufacturer : Shenz Address : 401, Building District 68, XingDong C BaoAn District, Shenzh SAA162631 VDE0126-1-1,VDE-AR-N4 C10/11,AS4777,RD1699,V	zhen SOFAR SOLAF 4, AnTongDa Industria ommunity,XinAn Stree en, China 4105,G83/2,EN50438, UTE C15-712-1	₹Co.,Ltd. al Park, et,
I A C E		

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation.

Page 5 of 188

Report no. 200320118GZU-001

Test item particulars				
Temperature range:	-25°C to +60	О°С		
AC Overvoltage category			🛛 OVC III	
DC Overvoltage category		🛛 OVC II		
IP protection class	IP65			
Possible test case verdicts:				
- test case does not apply to the test object:	N/A (Not ap	plicable)		
- test object does meet the requirement:	P (Pass)			
- test object does not meet the requirement:	F (Fail)			
Testing				
Date of receipt of test item:	27 April 202	20		
Date (s) of performance of tests:	27 April 202	20 – 17 Aug 2	020	
1				

General remarks:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

When determining for test conclusion, measurement uncertainty of tests has been considered. This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

Throughout this report a point is used as the decimal separator.

Page 6 of 188

General product information:

The equipment under test is single phase energy storage inverter. They are responsible for converting the direct current generated by battery into single-phase 230V, 50 Hz. It is basic insulation between grid and battery. Two mechanical disconnection device (relay) and high frequency isolated transformer are provided between grid and battery on line and neutral conductor

The topology diagram as following:

The inverters intended to operate at ambient temperature -25°C - +60°C, which will be specified in the user manual, however, the inverters will output full power when operated at 45°C, if operated at higher than 45°C temperature, the output power would be derated.

The equipment has three working mode. Charge mode, Discharge mode, Stand-alone mode: Charge mode: The AC voltage from mains charges the battery provided in the final system.

Discharge mode: The inverter converters the energy from the battery to 230Va.c.,50 Hz voltage and connected to AC mains. In this mode the inverter works as grid connected inverter.

Stand-alone mode: The inverter converter the energy from the battery to 230Va.c,50 Hz voltage and feed the general load. In this mode the inverter worked as stand-alone inverter.

Factory information:

Dongguan SOFAR SOLAR Co., Ltd.

1F-6F, Building E, No.1 JinQi Road, Bihu Industrial Park, Wulian Village, Fenggang Town, Dongguan City, China

Total Quality. Assured.

Γ

Page 7 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

	VDE-AR-IN 4105.2010-1	I	
Clause	Requirement - Test	Result - Remark	Verdict

4	General framework conditions		N/A
4.1	Provisions and regulations	This report is only evaluated and tested for PGU; The PGS incorporated with the PGU shall further consider this clause and sub-clause.	N/A
4.2	Application procedure and relevant document for connection	Shall consider in final PGS	N/A
4.3	Commissioning of the power generation system and/or the storage unit	Shall consider in final PGS	N/A

5	Network connection		Р	
5.1	Principles for determination of the network connection point	Shall consider in final PGS	N/A	
	Power generation systems and storage units shall be connected at a suitable point of the network, i. e. the network connection point. Based on the documents listed in 4.2, the network operator determines the suitable network connection point which will ensure safe network operation while also taking into account the power generation system and the storage unit and at which the requested power can be drawn and transmitted. The essential aspect for a network connection evaluation is always the behaviour of the power generation system and the storage unit at the network connection point or at the PCC. This is intended to ensure that the power generation system or storage unit is operated without adverse interactions and impairment of the supply of other customers. Annex D shows an example of the			
5.2	Rating of the network equipment	Shall consider in final PGS	N/A	
	Due to their operating mode, power generation systems and storage units may cause higher loading of lines, transformers and other network equipment. Therefore, the network operator verifies the transmission capacity of the network equipment with regard to the connected power generation systems and storage units in accordance with the relevant rating regulations. For calculation purposes, the maximum apparent power of the sum of all power generation systems and storage units Σ SAmax and usually the load factor $m =$			
	1 shall be used. This does not apply to buried cables for the connection of photovoltaic systems where a load factor $m = 0.7$ shall be used.			

Total Quality. Assured.

Page 8 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Clause Requirement - Test Result - Remark Verdict

5.3	Permissible voltage change	Shall consider in final PGS	N/A
	For undisturbed operation of the network, the amount of the voltage change caused by all power generation systems with a network connection point in a low- voltage network shall at none of the PCCs in this network may a value of 3 % as compared with the voltage without power generation systems. Deviations from the value of $\Delta u_a \le 3$ % are permissible as specified by the network operator (e. g. when using a controllable local network transformer). When calculating the voltage change, the displacement factor shall be taken into account which is provided by the network operator for the maximum apparent connection power of the power generation system		
	SAmax.		
5.4	Network interactions		N/A
	For power generation systems and storage units, the permissible limits for network interactions are also described in VDE-AR-N 4100, 5.4. For the connection evaluation of power generation systems and storage units, the connection owner provides the completed		
	forms E.2 to E.5 to the network operator.		
5.5	Connection criteria		Р
5.5.1	General When connecting a power generation system or a storage unit, the technical connection conditions of the network operator shall be observed.	Shall be considered full feed-in or excess feed-in that in accordance with VDE-AR-N 4100 in the power system, where also considered whether valid of PAV, E monitoring	Ρ

Total Quality. Assured.

Page 9 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Ma ، ام edi at

Clause	Requirement - Test	Result - Remark	Verdict
			· · · · · · · · · · · · · · · · · · ·
5.5.2	P AV, E monitoring (feed-in limitation)		N/A
5.5.2	 PAV, E monitoring (leed-in minitation) PAV, E monitoring allows a connection power PAV, E deviating from the installed power to be agreed with the network operator and to be set. The feed-in limit described in this sub-clause shall be measured at the central meter panel in accordance with VDE-AR-N 4100, 7.2. PAV, E monitoring can be an independent equipment mounted at the central meter panel in accordance with VDE-AR-N 4100 or in a suitable circuit distributor or may also be part of a power generation unit or a storage unit or a charging unit for electric vehicles. When PAV, E is exceeded, the power of the power generation system and/or the storage unit causing the event shall be reduced. PAV, E monitoring is to be used for monitoring the agreed active connection power PAV, E of power generation systems and/or storage units if thefeed-in power at the network connection point PAV, E agreed with the network operator is smaller than the sum of the installed 		
	maximum active connection power of all power		
	generation systems and/or storage units at that network connection point.		
5.5.3	Power generation systems ready for connection		N/A
	In addition to the requirements specified in this VDE application guide, DIN VDE V 0100-551-1		
	(VDE V 0100-551-1) applies to power generation systems ready for connection. Provided a connection-ready power generation system is connected via an existing specific energy		
	(e. g. complying with VDE V 0628-1 (VDE V 0628-1)) and a bidirectional meter is mounted at the central meter panel, the signature and the details of the system installer on the commissioning protocol E.8 may be omitted. A site map is not required in this case. This only applies up to a value $SAmax \le 600$ VA per network user installation		
5.6	Three-phase inverter systems		N/A
	For three-phase power generation systems feeding into the network via inverters, the power feed-in into the		
	three line conductors shall be three-phase balanced. The inverter circuit shall preferably be set up as a three phase current unit. The positive sequence system of the terminal voltages, even if they are unbalanced, is to be used as the reference quantity for the currents.		

Total Quality. Assured.

Page 10 of 188

Report no. 200320118GZU-001

Verdict

VDE-AR-N 4105:2018-11

Clause Requirement - Test Result - Remark

5.7 Behaviour of the power generation system at the network Ρ 5.7.1 (See appended table) Ρ General For frequencies between 47,5 Hz and 51,5 Hz, The unit is verified with automatic disconnection from the network due to a ROCOF (2.0Hz/s) without frequency deviation is not permitted. The actual disconnection. operating principle and the associated exceptions are detailed in 5.7.4.3. Frequency-dependent active power control is implemented in the open-loop control of the power generation units. In the frequency range of 47,5 Hz to 51,5 Hz, power generation systems shall be capable of network parallel operation in compliance with the time-related minimum requirements given in Table 1. Power generation units shall be able to ride through rapid frequency changes without disconnection from the network. This requirement applies provided the following averaged rates of change of frequency (RoCoF) are not exceeded: $- \pm 2.0$ Hz/s for a moving time slot of 0.5 s; or $-\pm$ 1,5 Hz/s for a moving time slot of 1 s; or $- \pm 1,25$ Hz/s for a moving time slot of 2 s. In case of rapid frequency changes, frequency measurements shall not take more than 200 ms. The minimum accuracy of frequency measurements is ± 50 mHz. Ρ 5.7.2 Steady-state voltage stability/reactive power supply

Total Quality. Assured.

Clause

5.7.2.1

Page 11 of 188

	VDE-AR-N 4105:2018-11			
F	Requirement - Test	Result - Remark	Verdict	
	-			
	General boundary conditions		Р	
	Steady-state voltage stability means the reactive power supply provided by a power generation system and/or a storage unit when energy is supplied for the purpose of voltage stability in the distribution network. The steady-state voltage stability is intended to keep slow (steady-state) voltage changes in the distribution network within acceptable limits. In case of three-phase feed-in, the reactive power supply associated with all three methods described in 5.7.2.4 a) to c) refers to the positive sequence system components of the current and voltage fundamental			

	supply associated with all three methods described in 5.7.2.4 a) to c) refers to the positive sequence system components of the current and voltage fundamental component. In a passive sign convention system (see A.8), this means the operation of the power generation system in Quadrant II (under-excited) or Quadrant III (over-excited). If a storage unit consumes energy from the network, the reactive power exchange at the network connection point shall comply with the contractual agreements regarding the network connection for customer installations for consumption (see VDE-AR-N 4100). It shall be possible to approach each set-point resulting from the applied control method according to the required reactive power range given in 5.7.2.2 and to operate the power generation unit therein for any duration. Changes of the reactive power supply within the agreed reactive power range shall be possible at any time.	
	reactive power control range may be extended.	
5.7.2.2	Reactive power supply at ΣS_{Emax}	 Р
5.7.2.2.1	General	Ρ
	It is permissible in certain cases described in 5.7.2.2.2 and 5.7.3 to reduce the active power supply to the benefit of the reactive power supply. This is not considered a reduction of the active power supply in thecontext of network security management. Power generation systems shall comply with the reactive power supply irrespective of the number of feed-inphases under normal operating conditions in the voltage tolerance band $U_{\rm D}$ + 10 %.	

Total Quality. Assured.

Page 12 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

 Clause
 Requirement - Test
 Result - Remark
 Verdict

-			
5.7.2.2.2	Type 2 systems – inverters only		Р
	At the generator terminals, each power generation		
	unit to be connected shall meet the requirements		
	according to Figure 2 and Figure 3.		
57000	Type 2 systems – Asynchronous generators	Inverter	NI/A
5.7.2.2.3	(directly connected to the network and	inverter	N/A
	principally not able to control any reactive power)		
	For power generation units with generators that are		
	directly connected to the network and principally not		
	able to control any reactive power and therefore use		
	constant capacities, a constant displacement factor		
	$\cos \phi = 0.95$ under-excited with an accuracy of ± 0.02 at		
	nominal voltage and rated power shall be observed.		
5.7.2.2.4	Type 1 systems and type 2 systems – stirling		N/A
	generators and fuel cells		
	For power generation systems with a rated apparent $f(x) = \frac{1}{2} \int \frac{1}{2$		
	power or $25 \equiv max \le 4,6 \text{ kVA}$, the network operator does not give any specifications. The value of $\cos \phi$		
	lies within a range of $\cos \phi = 0.95$ under-excited to		
	0,95over-excited.		
	At its generator terminals, each power generation unit		
	to be connected in systems ΣSEmax > 4,6 kVA shall		
	meet the requirements according to Figure 4.		
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax	(See appended table)	Р
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power	(See appended table)	Р
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power	(See appended table)	Р
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (P mom = <i>P</i> Emax), requirements also	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than P Emax In addition to the requirements for reactive power supply at the operating point P Emax of the power generation unit (P mom = P Emax), requirements also apply to operation with an instantaneous active power P mom smaller than P Emax	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point P_{Emax} of the power generation unit ($P_{\text{mom}} = P_{\text{Emax}}$), requirements also apply to operation with an instantaneous active power P_{mom} smaller than P_{Emax} . The minimum requirement for the reactive power	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator	(See appended table)	Р
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i>	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram.	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax . The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> /Q diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> E max In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed $\pm 4,0$ % in relation to <i>P</i> Emax.	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed $\pm 4,0$ % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P_{mom}/P_{Emax} < 0,2$ (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> /Q diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value <i>P</i> Emax	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax . The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> /Q diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value <i>P</i> Emax (reactive power supply and consumption	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value <i>P</i> Emax (reactive power supply and consumption respectively). Where a minimum technical power for	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> /Q diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value <i>P</i> Emax (reactive power supply and consumption respectively). Where a minimum technical power for a power generation unit has been agreed, the same conditions apply as for the range $0 \le Pmom/PEmax < 0.2$ (model)	(See appended table)	Ρ
5.7.2.3	Reactive power supply smaller than <i>P</i> Emax In addition to the requirements for reactive power supply at the operating point <i>P</i> Emax of the power generation unit (<i>P</i> mom = <i>P</i> Emax), requirements also apply to operation with an instantaneous active power <i>P</i> mom smaller than <i>P</i> Emax. The minimum requirement for the reactive power supply in partial load operating mode at the generator terminals is indicated as a red triangle on the <i>P</i> / <i>Q</i> diagram. Within the ranges given in Figure 5 or Figure 6, the maximum residual deviation between the set-point and the actual value of the reactive power at the generator terminals shall not exceed ± 4,0 % in relation to <i>P</i> Emax. Within the range of $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively), the power generation unit shall not exceed the reactive power value at the generator terminals of 10 % of the active power value <i>P</i> Emax (reactive power supply and consumption respectively). Where a minimum technical power for a power generation unit has been agreed, the same conditions apply as for the range $0 \le P$ mom/ <i>P</i> Emax < 0,2 (or 0,1, respectively) between 0 and the minimum	(See appended table)	Ρ

Requirement - Test

Total Quality. Assured.

Clause

VDE-AR-N 4105:2018-11	1	
	Result - Remark	Verdict

5724	Methods for reactive power supply	Method b and c are used for	Р
0.7.2.4		reactive power supply	
	I he reactive power supply for steady-state voltage	characteristic curve provided	
	stability shall not impair the dynamic network stability.	by the network operator within	
	The reactive power to be provided by the power	$\cos \phi = 0.90$ under-excited to	
	generation system is limited to the range given in	0.90 over-excited.	
	Figure 5 or Figure 6, respectively.		
	In the context of network connection planning, the		
	one of the following methods for reactive power		
	supply at the generator terminals of the power		
	deneration unit		
	a) reactive power voltage characteristic curve $Q(U)$:		
	or		
	b) displacement factor/active power characteristic		
	curve $\cos \phi (P)$; or		
	c) fixed displacement factor cos φ.		
	The $Q(U)$ rule applies only to three-phase power		
	generation units connected to the three-phase		
	current		
	system. Here, too, the reactive power requirements		
	are implemented at the generator terminals of the		
	Power generation units.		N1/A
	Q(1)		N/A
	The objective of this method is the reactive power		
	exchange between power generation unit and		
	network		
	depending on the actual voltage at the generator		
	terminals of the power generation unit $(Q = f(U))$.		
	The reference voltage Uq0 is 400 V / 3.		
	The arithmetic mean of the r.m.s. values (optionally		
	of the positive sequence system) of the three		
	line to peutral voltages at the generator terminals of		
	the power deperation unit is the target value for the		
	reactive power to be fed in on all line conductors.		
	Voltage measurement shall not exceed a maximum		
	measurement error of 1 % in relation to the nominal		
	value.		
	Re: b) Displacement factor/active power	(See appended table)	D
	characteristic curve $\cos \phi$ (<i>P</i>)		۳
	The objective of this method is the reactive power		
	supply by the power generation unit depending on		
	the		
	actual active power output ($Q = f(P_{mom})$).		

Total Quality. Assured.

Page 14 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Verdict

Clause	Requirement - Test	Result - Remark	Verdict
L			
	Re: c) Displacement factor cos ϕ The objective of displacement factor control is the power feed-in by the power generation unit at a constant active power/apparent power ratio (cos ϕ = const). Thereby, the use of the reactive power control range given in Figure 5 and Figure 6 is restricted. For this purpose, the target value is defined with a minimum increment of Δ cos ϕ = 0,01. The maximum permissible error tolerance of the reactive power feed-in is calculated using the error tolerance given in 5.7.2.3 of ± 4 % in relation to <i>P</i> Emax. The network operator predefines a displacement factor set-point.	(See appended table)	Ρ
5.7.2.5	Requirements for reactive power methods of type 2 systems (inverters only) and type 1 systems In the delivery state, none of the three reactive power methods specified in 5.7.2.4 is set as default. During the commissioning of power generation units, the method specified by the network operator shall be set by the system installer. Without the setting of the method specified by the network operator, power generation units shall not feed in any power.		Ρ
	The control behaviour of the reactive power (methods a), b) and c)) with respect to set-point offsets corresponds to the PT-1 behaviour shown in Figure 10. Method a) deals with a closed control circuit under consideration of the network impedance. Each reactive power value resulting from the control behavior predefined by the network operator shall be adjustable within a range of 6 s to 60 s (from 10 s to 60 s for type 1) when being provided by the power generation unit. The time specified by the network operator corresponds to 3 Tau of a PT-1 behaviour or to the time until reaching 95 % of the set-point. If no actual value is predefined by the network operator for this purpose, the applicable value is 10 s for 3 Tau or 95 % of the set-point, respectively. The envelop delay time includes the determination of the network voltage or the active and reactive powers.		Ρ
5.7.2.6	Special aspects regarding the extension of power generation systems The requirements specified in 5.7.2.4 shall also be met by the newly added power generation units at their generator terminals. The reactive power supply by the added power generation units in accordance with 5.7.2.2 shall be determined based on the sum of the rated apparent powers of the existing power generation system and the newly added power generation units.		Ρ

Total Quality. Assured.

Page 15 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Clause Requirement - Test

Result - Remark

Verdict

5.7.3	Dynamic network stability		Р
5.7.3.1	General	(See appended table)	Р
5.7.3.2	Dynamic network stability for type 1 units		N/A
	Transient stability – Reaction to network faults Regarding the power generation unit remaining connected to the network, the following applies to type 1 units: Throughout the operating range of the power generation unit, voltage drops caused by single- phase, two phase or three-phase network faults and the subsequent voltage transient phenomena shall not cause the power generation unit to become unstable or to disconnect from the network if the voltage assumes values within the limit curves shown in Figure 11 (red for the under-voltage limit curve, blue for the over-voltage limit curve).		
5.7.3.3	Dynamic network stability for type 2 units and storage units The following conditions apply to all type 2 power generation units and storage units: As long as the line-neutral-voltages at the generator terminals of the power generation unit or storage unit do not exceed the limit curves shown in Figure 12 (red for the under-voltage limit curve, blue for the over-voltage limit curve), both the power generation unit and the storage unit shall neither become unstable nor disconnect from the network throughout the operating range.		Ρ
	For evaluating the curves, the smallest respective value of the line-neutral-voltages at the power generation unit or the storage unit shall be used in case of a voltage drop, and the highest respective value of the line-neutral- voltages at the power generation unit or the storage unit shall be used in case of a voltage rise. As far as the set values for the NS protection given in Table 2 (column "Inverter(s)") anticipate the requirements given in Figure 12 in certain working points, merely the checking of the set values for NS protection is required for the verification procedure. If the voltage at the generator terminals falls below < 0.8 <i>U</i> n or exceeds > 1.15 <i>U</i> n (onset of fault), type 2		P
	0,8 U_n or exceeds > 1,15 U_n (onset of fault), type 2 power generation units and storage units shall ride through voltage drops without feeding current into the network of the network operator (limited dynamic network stability).		

Total Quality. Assured.

Page 16 of 188

VDE-AR-N 4105:2018-11			
Clause	Requirement - Test	Result - Remark	Verdict
	This requirement is deemed to be met, if the current fed in by the power generation unit(s) and/or the storage unit in any line conductor does not exceed 20 % of the rated current h within 60 ms and 10 % of h within 100 ms upon a voltage drop below 0,8 $U_{\rm h}$ or a voltage rise above 1.15 $U_{\rm h}$.		Ρ
	Behaviour after the end of a fault		Р
	If, after the end of a fault, the network voltage resumes a value within the voltage band from -15 % U_h to +10 % U_h and the active current of the power generation unit and/or the storage unit has been reduced during the network fault, it shall, immediately after the end of the fault, be increased to its pre-fault value as quickly as possible. The transient period shall not exceed a maximum of 1 s. The reactive power supply follows 5.7.2.5 in its time-related behaviour. In case of rotating machinery, the transient period shall not exceed a maximum of 6 s. At voltages of 1,15 U_h , the power generation units and storage units shall not disconnect from the network for a period of up to 60 s after the onset of the fault. If the tripping of the self-protection of the power generation units and/or the storage unit is imminent, these units can adjust their reactive power behaviour such as to prevent self-protection tripping.		
5.7.4	Active power output		Р
5.7.4.1	General In cases where set-points are specified by a third party (e. g. direct marketing) and of network security management in accordance with 5.7.4.2, the new set- point shall be approached with the customer installation's power gradients listed below in relation to the network connection point. Implementation of those power gradients directly at the power generation units or storage units is sufficient for meeting the requirement. The following power gradients shall be observed for increasing/reducing the active power output of power generation systems (minimum technical power or 5 % <i>P</i> Amax ↔ 100 % <i>P</i> Amax) as well as the energy supply and consumption by storage units (5 % <i>P</i> Amax ↔ 100 % <i>P</i> Amax): – at a maximum rate of 0,66 % <i>P</i> Amax per s; – at a minimum rate of 0,33 % <i>P</i> Amax per s. Power generation systems may react more slowly in case of set-points specified by third parties and of power increases. For this purpose, a minimum rate of 4 % <i>P</i> Amax per minute should be observed.	The active power can be remote-controlled on the communication interface	Ρ

Total Quality. Assured.

Γ

Page 17 of 188

Report no. 200320118GZU-001

VDF-AR-N 4105:2018-11

VDE-AR-N 4105:2018-11			
Clause	Requirement - Test	Result - Remark	Verdict
	Other technically induced power gradients (e. g. for hydro power generation systems with level control depending on network demands) are permissible upon approval by the network operator. The power increase or reduction of the customer installation shall be realised in a uniform process, i. e. with a behaviour as linear as possible. The specification of set-points by third parties shall be realised on the level of the individual customer installation or by the sum of all systems accessed by a third party (e. g. by uniform distribution of the active powers to be connected or disconnected over a total period of \ge 2,5 min).		N/A
	The power generation system or storage unit shall be provided with a logical interface (inlet port) which, irrespective of the power gradients listed above, allows to terminate the active power output within 5 s upon reception of a corresponding signal from the network operator. Additionally, the interface may be used for network security management.		Ρ
5.7.4.2	Network security management		Р

Total Quality. Assured.

Page 18 of 188

Report no. 200320118GZU-001

VDE-AR-N /105-2018-11

VDE-AR-N 4105:2018-11			
Clause	Requirement - Test	Result - Remark	Verdict
5.7.4.2.1	Types of power generation systems and storage units	The active power can be remote-controlled on the	Р
	If not specified otherwise by legislation, the requirements described below apply.	communication interface	
	 Photovoltaic systems PV systems shall contribute to the avoidance of network overload. For this purpose, PV system power is divided into three power groups: For PV systems up to and including 30 kWp, the system operator may chose between two options: a) by means of a corresponding inverter design or a certified technical control, the active power feed-in of the PV system shall be permanently limited to a maximum value of 70 % of the installed module power at the network connection point with the power gradients given in 5.7.4.1; or b) the PV system shall be provided with a technical means for remote-controlled reduction of the feedin power by the network operator. PV systems > 30 kWp up to and including 100 kWp shall be provided with a technical means enabling the remote-controlled reduction of the feed-in power by the network operator. PV systems > 100 kWp shall be provided with a technical means enabling the remote-controlled reduction of the feed-in power by the network operator. PV systems > 100 kWp shall be provided with a technical means enabling the remote-controlled reduction of the feed-in power by the network operator. PV systems > 100 kWp shall be provided with a technical means enabling the remote-controlled reduction of the feed-in power. 		
	Cogeneration of power and heat (CHP) systems, wind, biogas, hydroelectric power as well as landfill and sewage gas systems Those PV systems with <i>P</i> Amax > 100 kW shall be provided with a technical means enabling the remote- controlled reduction of the feed-in power by the network operator and for the provision of the actual food in power		N/A

Total Quality. Assured.

Page 19 of 188

VDE-AR-N 4105:2018-11			
Clause	Requirement - Test	Result - Remark	Verdict
			1
	Storage units buffering EEG or KWKG systems Those storage units with <i>P</i> Amax > 100 kW shall be provided with a technical means enabling the remote controlled reduction of the feed-in power by the network operator and for the provision of the actual feed-in power. These requirements do not apply if the feeding into the network of the network operator by a storage unit is prevented by technical control means. This shall be demonstrated by means of a manufacturer's declaration.		N/A
	Any EEG and KWKG systems with an intelligent measurement system If an intelligent measurement system is present, the network operator may demand the metering point operator to transmit network state data (i. e. also the actual feed-in power).		N/A
	Any power generation systems and storage units other than those indicated above All power generation systems and storage units shall be provided with technical means enabling the remote-controlled reduction of the feed-in power by the network operator and for the provision of the actual feed-in power.		Ρ
5.7.4.2.2	Implementation of network security management Power generation systems and storage units shall be able to reduce their active power to a power value predetermined by the network operator at the network connection point without disconnecting from the network. The following values have proved effective: 100 %/60 %/30 %/0 % in relation to the installed active feed-in power <i>P</i> Amax. Instead of reducing the generated active power, the consumed power of the customer installation can be increased, too. The sum of the reduced generated active power and/or the increased consumed active power at the network connection point shall not deviate by more than $\pm 5 \%$ from the setpoint of active power limitation. Power reduction shall be possible for any operating state and from any operating point. In case of a redispatch, the power generation systems shall be technically capable of increasing the power to a maximum of <i>P</i> Amax upon the network operator's request.	(See appended table)	Ρ

Total Quality. Assured.

Page 20 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

	VDE-AR-N 4105:2018-1	1	
Clause	Requirement - Test	Result - Remark	Verdict
5.7.4.2.3	Active power adjustment at over-frequency and under-frequency A network frequency outside the tolerance band of \pm 200 mHz around the nominal network frequency of 50,0 Hz indicates the presence of a critical system state in the integrated network where any power generation units and storage units shall contribute to the network frequency support. The accuracy of the frequency measurement in the steady state shall be $\leq \pm$ 10 mHz. The requirements given in 5.7.4.3 do not apply to	(See appended table) The starting frequency can be set from 50.2 to 50.5Hz, And, power gradient 2%-12% adjustable Default 50.2 and power gradient 5% setting.	P

E S S S S S S S S S S S S S S S S S S S	50,0 Hz indicates the presence of a critical system state in the integrated network where any power generation units and storage units shall contribute to the network frequency support. The accuracy of the frequency measurement in the steady state shall be $\leq \pm 10$ mHz. The requirements given in 5.7.4.3 do not apply to storage units in standby mode. Additionally, DC coupled storage units shall behave as type 2 units. In case of over-frequency , an excess of generated power is opposed by a deficit of consumed power. Therefore, all power generation units and storage units shall be able to adjust the active power working point at an over-frequency up to a maximum of 51,5 Hz (see Figure 14 and Figure 15). Power generation units shall enable the frequency for starting this frequency-dependent active power feed- in to be set to a value between 50,2 Hz and 50,5 Hz. Unless specified otherwise by the network operator, this start frequency shall be set to 50,2 Hz. The static value of the frequency-dependent active power feed- in shall be adjustable within a range of 2 % to 12 %. This corresponds to a power gradient within a range of 16.67 % of <i>P</i> ref per Hertz (<i>s</i> = 12 %) to	And, power gradient 2%-12% adjustable Default 50.2 and power gradient 5% setting.	
4 1 1	point at an over-frequency up to a maximum of 51,5 Hz (see Figure 14 and Figure 15). Power generation units shall enable the frequency for		
i. I	starting this frequency-dependent active power feed- in to be set to a value between 50,2 Hz and 50,5 Hz.		
l t	Unless specified otherwise by the network operator, this start frequency shall be set to 50,2 Hz. The static		
i i	value of the frequency-dependent active power feed- in shall be adjustable within a range of 2 % to 12 %.		
٦	This corresponds to a power gradient within a range of 16.67 % of Pret per Hertz ($s = 12$ %) to		
1	100 % of <i>P</i> ref per Hertz ($s = 2$ %). Unless specified		
	otherwise by the network operator, a gradient of 40 % of <i>P</i> ref per Hertz ($s = 5$ %) shall be set (see Figure 14)		
F	For storage units, the generated active power with a		
ç r	gradient of 40 % of P Emax per Hertz ($s = 5$ %) shall be reduced or increased (see Figure 15).		
C	Consequently, the power generation unit or the		
t	storage unit will constantly move up and down along the frequency characteristic within the frequency		
r	range of 50,2 Hz (unless specified otherwise for		
F	power generation units by the network operator) to		
F	power feed-in ("operation along the characteristic").		

Total Quality. Assured

Page 21 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Clause Requirement - Test Result - Remark Verdict At frequencies below 49,8 Hz, all power generation Ρ A gradient of 100 % PEmax per units shall increase the instantaneous generated Hertz (s = 2 %) applies active power *P*mom with a gradient of 40 % *P*Emax per (See appended table) Hertz (s = 5 %) to its technically possible maximum value. For storage units, a gradient of 100 % PEmax per Hertz (s = 2 %) applies. The maximum value is determined by the actual primary energy supply as well as the actually usable storage power. Power reductions for the protection of operating equipment are permitted even at under-frequency. For CHP systems, power reductions resulting from a heat-lead operating mode or a power drop due to the rotational speed are also permitted. Storage units dedicated to other purposes (e.g. gas storage units in biogas systems, DC buffer storage elements for self-consumption etc.) should be activated for this purpose. System-integrated storage units with an energy level below $P_{\rm h} \times 30$ s (e.g. smoothing chokes, indirect capacitors etc.) may be neglected for this application. Consequently, power generation units and storage units will constantly move up and down along the frequency characteristic also within the frequency range of 49,8 Hz to 47,5 Hz or 47,8 Hz with regard to their maximum possible active power feed-in ("operation along the characteristic"). At an under-frequency within the range of 49,8 Hz to 47,5 Hz, all storage units in charging mode shall reduce their instantaneous charging power according to the characteristic curve shown in Figure 15 to its technically possible minimum value ("operation along the characteristic"). In addition, storage units, as far as their charging state permits, shall change into the operating mode "energy supply" and increase their power according to the characteristic curve shown in Figure 15. In this case, system stability is of higher priority than a potential restraint for feeding storage energy into the network of the network operator based on technical/financial requirements. At network frequencies f < 47,5 Hz, power generation units and storage units shall disconnect from the network (see Figure 14 and Figure 15).

Total Quality. Assured.

Clause

Page 22 of 188

Report no. 200320118GZU-001

VDE AD N 4105-2019 11

VDE-AR-N 4105:2018-11		
Requirement - Test Result - Remark		Verdict
Requirements for the control times for power generation units and storage units The initial time delay <i>T</i> V of the frequency-dependent		Р

generation units and storage units The initial time delay TV of the frequency-dependent adjustment of the active power output at over- frequency and under-frequency is part of the transient period and shall preferably be ≤ 2 s. In case of a time delay > 2 s, the operator of the power generation system shall justify that delay by submitting technical proof to the transmission network operator. For type 2 power generation units and storage units, the necessary initial time delays TV for reaching the required transient periods are significantly shorter than 2 s. For the time curve of the frequency-dependent active power adjustment, the following conditions regarding the initial time delay TV and the transient period Tan_{90} % shall be observed: - After $TV + 0,1 \times (Tan_{90} \% - Tv)$ has elapsed, a value of at least 9 % of the required power adjustment ΔP has been reached. - After the transient period Tan_{90} % has elapsed, a	
value of 90 % of the power adjustment ΔP has been reached.	
During the control process ("operation along the characteristic"), the power generation unit and the storage unit shall respond as quickly as possible to sudden network frequency changes within a frequency range of 50,2 Hz to 51,5 Hz (subject to capability as declared by the manufacturer) with a transient period of 8 s for $\Delta P \le 45$ % of P_{Emax} and ΔP for power changes beyond that in case of type 1 units and type 2 units with rotating machinery and 2 s in case of all other type 2 power generation units and 1 s in case of storage units. The settling period shall not exceed 30 s for type 1 units and type 2 units with rotating machinery or 20 s for all other type 2 power generation units and for storage units. After settling, the supplied active power should deviate by $\le \pm 10$ % P_{Emax} from the set-point. The same requirements shall be applied to the active power increase at an under-frequency between 49,8 Hz and 47,5 Hz.	Ρ

Total Quality. Assured.

_

VDE-AR-N 4105:2018-1	1	
Clause Requirement - Test	Result - Remark	Verdict
Conditional requirements based on technical restrictions As an alternative to active power reduction at over-frequency, non-controllable power generation units may disconnect from the network within the frequency range of 50,2 Hz to 51,5 Hz; in that case, uniform distribution of the disconnection frequency in maximum increments of 0,1 Hz shall be ensured for each system type by the manufacturer. Power generation units of limited variability, e. g. only within the range of 70 % to 100 % <i>P</i> Emax, can be curtailed within that range in accordance with the characteristic curve. Outside the controllable range, disconnection is then carried out according to the uniformly distributed shut-down limit curve. For power generation units with combustion engines or gas turbines, active power reduction occurs with a power gradient of at least 66 % <i>P</i> Emax per minute (equals 1,11 % <i>P</i> Emax per second). Thus, the transient period of 8 s can be observed up to a power reduction of 8,88 % <i>P</i> Emax. In case of a greater change of frequency, the transient period is accordingly higher. Linear generators, such as stirling machines up to a maximum apparent power of <i>S</i> Amax ≤ 4,6 kVA, are exempt from the active power feed-in at over/underfrequency. They may remain connected to the network within a frequency range between 50,2 Hz and their maximum upper frequency limit, and may disconnect from the network if this value is exceeded or, at the latest, when a frequency of 51,5 Hz is reached or exceeded. At an under-frequency limit, linear generators should remain connected to the network but shall disconnect from it at the latest when a frequency of 47,5 Hz is reached or exceeded.		N/A

Total Quality. Assured.

	VDE-AR-N 4105:2018-1	1	
Clause	Requirement - Test	Result - Remark	Verdict
			_
	End of critical network state and return to normal operation Even if the network frequency has resumed a value within the tolerance band of 50,0 Hz \pm 200 mHz after a frequency deviation, a critical network state has still to be assumed initially. The time for transition from the critical network state to normal operation is limited by a maximum change of the active power set-point based on <i>P</i> mom. This change of the active power set-point (except for providing the operating reserve) shall be limited to a maximum gradient of 10 % of the active power <i>P</i> Emax per minute (under consideration of 5.7.1). Only after the network frequency has been within the tolerance band of 50,0 Hz \pm 200 mHz for 10 min continuously, the normal operation of the network is deemed to be restored whereupon this requirement does no longer apply.		Ρ
5.7.4.4	Voltage-dependent active power reduction In order to avoid disconnection of the power generation system due to over-voltage protection U >, it is permissible to reduce the active power feed- in as a function of the voltage of (a) power generation unit(s). Implementation is then chosen by the system manufacturer. This is not considered an active power reduction in the context of feed-in management in compliance with EEG. Surges or oscillations of the active power feed-in are not permitted for that purpose.		N/A
5.7.5	 Short-circuit contribution Due to the operation of a power generation system, the short-circuit current of the low-voltage network is increased by the short-circuit current of the power generation system. Therefore, the short-circuit current of the power generation system. Therefore, the short-circuit current of the power generation system to be expected at the network connection point shall be indicated in accordance with 4.2. For the determination of the initial short-circuit AC current contribution <i>I</i>kA of a power generation system, the following roughly estimated values can be assumed: – for synchronous generators: 8 times the rated current; for asynchronous generators: 6 times the rated current. If the power generation system causes a short-circuit current increase in the network operator's network in excess of the rated value, then connection owner and network operator shall agree upon appropriate measures limiting the short-circuit current from the power generation system accordingly. 		P

Total Quality. Assured.

Clause

Page 25 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

VDE-AR-IN 4103.2010-11								
Requirement - Test	Result - Remark	Verdict						

6	Construction of the power generation system/networ protection)	k and system protection (NS	Р
6.1	General requirements		Р
	The network and system protection (NS protection) is a type-tested protective device with a NS protection certificate (see Form E.6) wherein all protective functions specified in 6.5 are installed. The NS protection acts on the interface switch in accordance with 6.4. Depending on the sum of the maximum apparent powers of all power generation systems and storage units connected to the same network connection point Σ SAmax , the following conditions apply to the NS		
	protection:		
6.2	Central NS protection The central NS protection shall be accommodated, installed and connected as an independent equipment at the central meter panel in a suitable circuit distributor in accordance with VDE-AR-N 4100, Clause 8, Paragraph 1, and not in the upper connection compartment according to VDE-AR-N 4100, 7.2, Paragraph 11. Examples of the arrangement of the central NS protection and hence the connection of power generation systems to meter panels are shown in Annex C. For central NS protection, it is additionally required to carry out a trigger test for checking the tripping circuit "NS protection – interface switch". For this purpose, the central NS protection is provided with a means for tripping the interface switch (e. g. by means of a test button) for testing purposes. Activation shall be visualised at the interface switch.	Integrated NS protection	N/A
6.3	Integrated NS protection In the case of integrated NS protection, the NS protection can be integrated in the programmable system control of the power generation units (e. g. in the inverter control). In this case, the means for testing the tripping circuit "NS protection – interface switch" by the system installer is not required. The integrated NS protection acts on an integrated interface switch (see 6.4.3).		Ρ
6.4	Interface switch	The PSU include integrated interface switch and is type tested in the report	Р

Total Quality. Assured.

Report no. 200320118GZU-001

VDE AR N 4105-2019 11

	VDE-AR-N 4105:2018-1	1	
Clause	Requirement - Test	Result - Remark	Verdict
6.4.1	General For the connection of the power generation system to the network operator's low-voltage network or to the remaining customer installation, an interface switch shall be used. The interface switch is controlled by the NS protection and automatically triggers if at least one protective function responds. As interface switches, the switching devices of the individual power generation units (integrated interface switch) can be used. The integrated interface switches can also be used in combination with the central NS protection. In any	Integrated interface switch has been type tested in compliance with DIN EN 62109	Ρ
	case, central NS protection from \sum SAmax>30 kVA (sum of the maximum apparent powers of all power generation systems and storage units connected to the same network connection point; for exceptions, see 6.1) shall be directly connected to the central meter panel. Where a signal is routed to a spatially separate switching device, it shall be ensured that the required disconnection periods given in Table 2 are observed and lead to the disconnection of the power generation system. During commissioning of the power generation system, a tripping test of the interface switch shall be conducted. The interface switch shall be designed for the rated conditional short-circuit current and under consideration of the protective devices required according to 6.5 and it shall enable instantaneous tripping. The switching capacity of the interface switch shall be rated according to the rated current of the upstream fuse or the maximum initial short-circuit AC current contribution of the power generation system, whichever is the higher. The functional check of the interface switch shall be carried out according to a) or b) or c): a) by using an interface switch which, in its active state, requires a control voltage to be applied continuously and which disconnects automatically when this voltage is no longer applied. The operational connection and disconnection processes shall be monitored; b) by connection and disconnection of the interface switch via the NS protection and monitoring its proper functioning (e. g. break contact of a monitoring contact) at least once daily; c) by using the integrated interface switch and the integrated NS protection for PV and battery inverters in compliance with DIN EN 62109 (VDE 0126-14). When a defect of the interface switch is detected, the power generation system shall neither feed in nor		

Total Quality. Assured.

Page 27 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11 Clause Requirement - Test Result - Remark Verdict 6.4.2 Central interface switch N/A The central interface switch shall be a galvanic break device (e.g. mechanical contactor, protective motor switch, mechanical circuit breaker). For a power generation system required to contribute to the dynamic network stability, an interface switch enabling compliance with the requirements specified in 5.7.3 (no malfunction at under-voltage in the context of the FRT requirements) shall be used. The interface switch shall be installed in the distribution field of or directly at the central meter panel in a circuit distributor. Examples of the arrangement of interface switches and hence the connection of power generation systems to meter panels are shown in Annex C. 6.4.3 Integrated interface switch Integrated power relay in the Ρ PGU. Each live conductor is For the construction of the interface switch, the constructed with two relays requirements specified in 6.1 shall be considered. The interface switch (e. g. power relay, mechanical contactor, mechanical circuit-breaker, etc.) ensures galvanic breaking. For power generation systems with inverters, the interface switch shall be provided on the inverter's network side. Ρ 6.5 Protective devices and protection settings 6.5.1 General Ρ The purpose of NS protection is to disconnect the power generation system from the network in the event of inadmissible voltage and frequency values (also refer to DIN VDE 0100-551 (VDE 0100-551)). This is meant to prevent inadvertent feed-in from the power generation system into a partial network separated from the main distribution network. 6.5.2 Ρ Protective functions (See appended table) The NS protection shall be provided with a means for preventing unauthorised access (z. B. sealable, password protection). The rise-in-voltage protection U > shall be designed such as to be adjustable in the NS protection (see Table 2, Footnote b). Additionally, the time delay of the voltage drop protection U < and U<< for directly coupled synchronous and asynchronous generators with $P_{\rm D}$ > 50 kW shall also be designed such as to be adjustable in the NS protection (see Table 2, Footnote d). Any other protective functions listed in 6.5.1 are either to be installed permanently, i. e. not adjustable, in the NS protection or to be provided with an additional separate protection against unauthorised access (e. g. password protection) for preventing modifications.

Total Quality. Assured.

Page 28 of 188

Report no. 200320118GZU-001

Verdict

VDE-AR-N 4105:2018-11

Clause Requirement - Test Result - Remark

6.5.3	Islanding detection	(See appended table)	Р
6.6	Further requirements for power generation systems	Shall be considered in PGS	N/A
7	Metering for billing purposes		N/A
8	Operation of the system		Р
8.1	General		Р
8.2	Special aspects of the management of the network operator's network		N/A
8.3	Connection conditions and synchronisation		Р
8.3.1	General Power generation systems and storage units shall be connected to the network operator's network only if a suitable device determines that both the mains voltage and the mains frequency are within the tolerance range of 85 % <i>U</i> h to 110 % <i>U</i> h or 47,5 Hz to 50,1 Hz, respectively, for a period of at least 60 seconds. Additionally, the delay times for the reconnection of a generator and the staggered times applicable when connecting several generators shall be sufficient for safely finishing any control and adjustment processes within the power generation systems and storage units being reconnected to the network operator's network at the tripping of the NS protective device or the <i>P</i> AV, E monitoring, the active power of controllable power generation systems and storage units. Non-controllable power generation systems and storage unite. Non-controllable power generation systems and storage units can connect after 1 min to 10 min (random generator) or later.	(See appended table)	Ρ
8.3.2	Connection of synchronous generators		N/A
8.3.3	Connection of asynchronous generators		N/A
8.3.4	Connection of power generation units and storage units with inverters Power generation units with inverters (such as photovoltaic systems) and storage units with inverters		Р
8.4	shall only be connected with <i>k</i> imax ≤ 1,2. Special aspects regarding the planning, installati generation systems and storage units each with PA	ion and operation of power max ≥ 135 kW	N/A
9	Verification of electrical properties		Р

Total Quality. Assured.

Page 29 of 188

Report no. 200320118GZU-001

VDE-AR-N 4105:2018-11

Clause Requirement - Test Result - Remark Verdict

Annex A: Explanations (informative)

Annex B: Connection examples and measurement strategies (informative)

Annex C: Examples of meter panel configurations (informative)

Annex D: Examples for the connection evaluation of power generation systems -Connection of a 20 kW PV system (informative)

	Annex E: Forms (mandatory)	Р
E.1	Application procedure	N/A
E.2	Data sheet for power generation systems	N/A
E.3	Data sheet for storage units	N/A
E.4	Unit certificate	Р
E.5	Test report "Network interactions" for power generation units with an input current > 75 A	N/A
E.6	Certificate of the network and system protection	Р
E.7	Requirements for the test report for the NS protection	Р
E.8	Commissioning protocol for power generation systems and/or storage units	N/A
E.9	Type approval procedure	N/A

Page 30 of 188

0.074

Appended Table - Testing Result

5.2.2	TABLE: R	BLE: Rapid voltage change P							
Operation type: Switching on at any power level (without default to primary energy source)									
Condition		Test 1: cosφ=1	Test 2: cosφ=0.90over- excited	Test 3: cosφ=0 excited).90under-				
Ki		0.056	0.046	0.0)38				
Kimax Limit		<1.2							
Operation type	: start-up a	at Pn (reference conditi	on) with circuit breaker reclosi	ing					
Condition		Test 1: cosφ=1	Test 2: cosφ=0.90over- excited	Test 3: cosφ=0 excited).90under-				
Ki		0.035	0.038	0.0)51				
Kimax Limit		<1.2	<1.2						
		1							
Operation type	: shut-dow	n (breaking operation a	at nominal power)						
Condition		Test 1: cosφ=1	Test 2: cosφ=0.90over- excited	Test 3: cosφ=0 excited).90under-				
Ki		0.074	0.037	0.0)23				
Kimax Limit		<1.2							
Note:									
1) Sk,fic/Sn = 2	20								
2) ki is the ration generator curre	o of the hig ent, the cu	hest current occurring rrent is to be considere	during a switching operation to d as an r.m.s. value over a pe	o the normal riod					
Switching oction					Ki				
Switching actio	tion without	it default (to primory on	oray corrier)		NI				
Worst soos st		r of gonorator postions	ergy carrier)		0.000				
Marking apore	tion of rofo		many approx carrier)		0.000				
Breaking opera	Marking operation at reference conditions (of primary energy carrier) 0.074 Practing operation at paminal power 0.051								

Worst case value of all switching operations Ki max

Total Quality. Assured.

Page 31 of 188

5.2.3		TABLE: Flick	ABLE: Flick P								
Test impedance			0.4Ω +0.25j								
			Pst			CΨk					
		L1	L2	L3	L1	L2	L3				
	1	0.083			1.66						
	2	0.081			1.62						
	3	0.086			1.72						
	4	0.088			1.76						
	5	0.087			1.74						
6 0.088		0.088			1.76						
7		0.085			1.70						
8		0.085			1.70						
9		0.071	0.071		1.42						
	10	0.076	0.076		1.52						
	11	0.087			1.74						
	12	0.085			1.70						
				Calculation							
	L1	0.084									
DIt	L2										
1 11	L3										
greatest ascertained 1.76											
Note 1) Sł	Note: 1) Sk,fic/Sn = 20										

Volt Range 300		300 \	//50Hz		Element1		Judge	ement	Pass	5
Un	(U1)	230.0)65V		lota		Judge	ement	Pass	
Freq	(U1)	50.00)0Hz		(Ele	ment1)				
Dmin		0.109	6							
	dc['	%]	dmax	[%]	d(t)	[ms]	Ps	t	P	lt
Limit	3.3	0	4.0	0	5	00	1.0	0	0.6	65
					3.3	30%			N:*	12
No. 1	0.270	Pass	0.314	Pass	0.0	Pass	0.083	Pass		
2	0.273	Pass	0.314	Pass	0.0	Pass	0.081	Pass		
3	0.273	Pass	0.322	Pass	0.0	Pass	0.086	Pass		
4	0.271	Pass	0.315	Pass	0.0	Pass	0.088	Pass		
5	0.269	Pass	0.302	Pass	0.0	Pass	0.087	Pass		
6	0.274	Pass	0.303	Pass	0.0	Pass	0.088	Pass		
7	0.270	Pass	0.310	Pass	0.0	Pass	0.085	Pass		
8	0.270	Pass	0.309	Pass	0.0	Pass	0.085	Pass		
9	0.168	Pass	0.208	Pass	0.0	Pass	0.071	Pass		
10	0.188	Pass	0.242	Pass	0.0	Pass	0.076	Pass		
11	0.266	Pass	0.289	Pass	0.0	Pass	0.087	Pass		
12	0.267	Pass	0.307	Pass	0.0	Pass	0.085	Pass		
Result		Pass		Pass		Pass		Pass	0.084	Pass

Total Quality. Assured.

Page 32 of 188

5.2.4	TABLE:	ABLE: Harmonics and inter-harmonics (according to DIN EN 61000-3-2)							Р			
	Model: ME3000SP											
Active power	P/P _n [%]	10	20	30	40	50	60	70	80	90	100	Limit
Harmonic n	umber	[[A]	[[A]	[[A]	[[A]	[A]	[A]	[[A]	[A]	[[A]	[[A]	[A]
2		0.0048	0.0079	0.0016	0.0036	0.0044	0.0044	0.0062	0.0096	0.0098	0.0146	1.080
3		0.0596	0.0808	0.0873	0.0940	0.0898	0.0939	0.0909	0.0932	0.0907	0.0914	2.300
4		0.0087	0.0094	0.0053	0.0093	0.0042	0.0090	0.0070	0.0078	0.0074	0.0031	0.430
5		0.0355	0.0347	0.0434	0.0372	0.0431	0.0411	0.0437	0.0436	0.0459	0.0494	1.140
6		0.0015	0.0014	0.0017	0.0020	0.0026	0.0018	0.0017	0.0018	0.0016	0.0021	0.300
7		0.0248	0.0277	0.0252	0.0256	0.0260	0.0269	0.0307	0.0314	0.0358	0.0424	0.770
8		0.0011	0.0029	0.0028	0.0034	0.0027	0.0021	0.0029	0.0030	0.0021	0.0027	0.230
9		0.0130	0.0136	0.0111	0.0151	0.0229	0.0272	0.0291	0.0364	0.0362	0.0429	0.400
10		0.0009	0.0019	0.0019	0.0015	0.0015	0.0034	0.0025	0.0021	0.0031	0.0024	0.184
11		0.0092	0.0105	0.0094	0.0127	0.0164	0.0326	0.0311	0.0365	0.0411	0.0464	0.330
12		0.0025	0.0041	0.0036	0.0039	0.0034	0.0019	0.0025	0.0025	0.0018	0.0027	0.153
13		0.0049	0.0077	0.0087	0.0142	0.0196	0.0255	0.0363	0.0338	0.0436	0.0503	0.210
14		0.0015	0.0028	0.0024	0.0041	0.0040	0.0047	0.0044	0.0059	0.0038	0.0039	0.131
15		0.0030	0.0039	0.0055	0.0182	0.0235	0.0266	0.0362	0.0406	0.0387	0.0455	0.150
16		0.0023	0.0040	0.0033	0.0016	0.0033	0.0019	0.0018	0.0014	0.0016	0.0012	0.115
17		0.0013	0.0023	0.0047	0.0170	0.0236	0.0264	0.0288	0.0364	0.0379	0.0447	0.132
18		0.0012	0.0025	0.0035	0.0038	0.0025	0.0032	0.0025	0.0033	0.0039	0.0014	0.102
19		0.0032	0.0016	0.0037	0.0144	0.0194	0.0234	0.0263	0.0310	0.0369	0.0407	0.118
20		0.0007	0.0013	0.0017	0.0036	0.0036	0.0035	0.0026	0.0026	0.0026	0.0024	0.092
21		0.0019	0.0025	0.0042	0.0128	0.0176	0.0226	0.0244	0.0254	0.0307	0.0324	0.107
22		0.0014	0.0014	0.0011	0.0020	0.0020	0.0024	0.0013	0.0027	0.0013	0.0018	0.084
23		0.0035	0.0045	0.0017	0.0085	0.0137	0.0191	0.0217	0.0233	0.0254	0.0302	0.098
24		0.0011	0.0009	0.0023	0.0029	0.0025	0.0028	0.0023	0.0024	0.0016	0.0024	0.077
25		0.0013	0.0027	0.0019	0.0078	0.0127	0.0158	0.0191	0.0213	0.0229	0.0277	0.090
26		0.0019	0.0021	0.0024	0.0041	0.0040	0.0045	0.0038	0.0035	0.0040	0.0033	0.071
27		0.0017	0.0024	0.0018	0.0064	0.0095	0.0131	0.0150	0.0169	0.0178	0.0210	0.083
28		0.0012	0.0015	0.0013	0.0018	0.0032	0.0033	0.0038	0.0038	0.0033	0.0037	0.066
29		0.0012	0.0018	0.0014	0.0057	0.0088	0.0115	0.0138	0.0146	0.0159	0.0177	0.078
30		0.0006	0.0015	0.0016	0.0014	0.0012	0.0011	0.0014	0.0014	0.0020	0.0022	0.061
31		0.0036	0.0051	0.0026	0.0037	0.0049	0.0081	0.0111	0.0123	0.0137	0.0158	0.073
32		0.0019	0.0022	0.0033	0.0021	0.0022	0.0017	0.0017	0.0016	0.0016	0.0016	0.058
33		0.0052	0.0060	0.0039	0.0041	0.0049	0.0077	0.0099	0.0109	0.0125	0.0144	0.068
34		0.0024	0.0018	0.0018	0.0022	0.0023	0.0026	0.0015	0.0017	0.0015	0.0016	0.054
35		0.0022	0.0038	0.0035	0.0027	0.0035	0.0051	0.0061	0.0078	0.0093	0.0112	0.064
36		0.0008	0.0017	0.0019	0.0012	0.0015	0.0013	0.0015	0.0008	0.0014	0.0011	0.051
37		0.0044	0.0047	0.0044	0.0037	0.0029	0.0039	0.0053	0.0072	0.0084	0.0106	0.061
38		0.0016	0.0010	0.0018	0.0012	0.0019	0.0013	0.0009	0.0010	0.0012	0.0015	0.048
39		0.0037	0.0044	0.0029	0.0035	0.0019	0.0029	0.0039	0.0058	0.0063	0.0090	0.058
40		0.0006	0.0011	0.0010	0.0012	0.0014	0.0019	0.0025	0.0022	0.0025	0.0020	0.046

Total Quality. Assured.

Page 33 of 188

5.2.4 TABLE: Harmonics and inter-harmonics (According to DIN EN 61000-4-7)											
Model: ME3000SP											
Active power P/Pn [%]	0	10	20	30	40	50	60	70	80	90	100
Frequency [Hz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
75	0.4931	0.2382	0.1060	0.1048	0.0605	0.0479	0.0412	0.0447	0.0323	0.0408	0.0309
125	0.4321	0.1850	0.0942	0.0680	0.0474	0.0354	0.0299	0.0255	0.0208	0.0217	0.0219
175	0.4557	0.1985	0.1113	0.0843	0.0597	0.0443	0.0416	0.0280	0.0235	0.0219	0.0197
225	0.4213	0.1946	0.1160	0.0778	0.0551	0.0475	0.0428	0.0288	0.0233	0.0227	0.0196
275	0.3955	0.2115	0.1236	0.0880	0.0752	0.0476	0.0358	0.0292	0.0260	0.0230	0.0216
325	0.3673	0.2071	0.1250	0.0839	0.0694	0.0506	0.0403	0.0307	0.0283	0.0259	0.0217
375	0.3789	0.2431	0.1271	0.0760	0.0730	0.0489	0.0515	0.0354	0.0277	0.0255	0.0237
425	0.3716	0.2339	0.1362	0.0775	0.0843	0.0503	0.0580	0.0345	0.0295	0.0256	0.0257
475	0.3899	0.2212	0.1376	0.0762	0.0636	0.0525	0.0370	0.0319	0.0273	0.0233	0.0208
525	0.3888	0.2256	0.1304	0.0771	0.0784	0.0543	0.0413	0.0315	0.0295	0.0268	0.0214
575	0.3703	0.2092	0.1250	0.0747	0.0755	0.0533	0.0417	0.0313	0.0267	0.0248	0.0243
625	0.3865	0.2075	0.1226	0.0731	0.0685	0.0477	0.0461	0.0294	0.0267	0.0246	0.0229
675	0.3659	0.1886	0.1138	0.0834	0.0790	0.0484	0.0348	0.0313	0.0264	0.0247	0.0211
725	0.3717	0.1835	0.1216	0.0670	0.0895	0.0516	0.0324	0.0290	0.0234	0.0214	0.0214
775	0.3279	0.1742	0.1064	0.0679	0.0678	0.0730	0.0320	0.0358	0.0242	0.0246	0.0194
825	0.3516	0.1688	0.1008	0.0600	0.0546	0.0648	0.0310	0.0349	0.0228	0.0236	0.0183
875	0.3101	0.1754	0.0939	0.0627	0.0704	0.0480	0.0315	0.0306	0.0230	0.0202	0.0186
925	0.3451	0.1585	0.0904	0.0596	0.0876	0.0402	0.0289	0.0372	0.0226	0.0243	0.0182
975	0.3124	0.1503	0.0824	0.0580	0.0589	0.0351	0.0279	0.0290	0.0234	0.0200	0.0179
1025	0.3337	0.1452	0.0808	0.0538	0.0452	0.0332	0.0293	0.0319	0.0216	0.0190	0.0173
1075	0.3254	0.1341	0.0780	0.0534	0.0465	0.0329	0.0298	0.0246	0.0204	0.0205	0.0163
1125	0.3117	0.1325	0.0721	0.0559	0.0534	0.0329	0.0297	0.0230	0.0212	0.0214	0.0162
1175	0.3542	0.1209	0.0703	0.0461	0.0421	0.0322	0.0250	0.0271	0.0184	0.0192	0.0150
1225	0.3574	0.1281	0.0692	0.0478	0.0384	0.0366	0.0238	0.0272	0.0200	0.0185	0.0155
1275	0.3314	0.1286	0.0664	0.0513	0.0359	0.0330	0.0213	0.0221	0.0200	0.0172	0.0142
1325	0.2833	0.1245	0.0620	0.0466	0.0335	0.0284	0.0216	0.0200	0.0167	0.0158	0.0138
1375	0.3018	0.1230	0.0652	0.0430	0.0336	0.0299	0.0215	0.0226	0.0179	0.0191	0.0131
1425	0.2820	0.1145	0.0552	0.0415	0.0337	0.0273	0.0202	0.0205	0.0183	0.0156	0.0129
1475	0.2858	0.1091	0.0595	0.0416	0.0322	0.0302	0.0217	0.0238	0.0174	0.0158	0.0127
1525	0.2921	0.1056	0.0555	0.0403	0.0291	0.0259	0.0208	0.0207	0.0162	0.0162	0.0115
1575	0.2679	0.1049	0.0511	0.0410	0.0383	0.0285	0.0218	0.0236	0.0171	0.0149	0.0134
1625	0.2438	0.1006	0.0528	0.0404	0.0348	0.0263	0.0193	0.0236	0.0154	0.0147	0.0137
1675	0.2460	0.1106	0.0487	0.0374	0.0301	0.0301	0.0174	0.0174	0.0138	0.0150	0.0116
1725	0.2503	0.1056	0.0468	0.0349	0.0270	0.0292	0.0174	0.0155	0.0145	0.0153	0.0120
1775	0.2351	0.0898	0.0444	0.0314	0.0312	0.0226	0.0166	0.0149	0.0137	0.0128	0.0111
1825	0.2419	0.0929	0.0461	0.0360	0.0345	0.0218	0.0168	0.0158	0.0130	0.0123	0.0123
1875	0.2247	0.0864	0.0484	0.0300	0.0292	0.0216	0.0170	0.0164	0.0130	0.0131	0.0122
1925	0.2212	0.0818	0.0454	0.0331	0.0273	0.0240	0.0189	0.0161	0.0149	0.0135	0.0121
1975	0.2026	0.0899	0.0498	0.0310	0.0261	0.0230	0.0158	0.0156	0.0158	0.0129	0.0102

Total Quality. Assured.

Page 34 of 188

5.2.4 TABLE: Harmonics and inter-harmonics (According to DIN EN 61000-4-7)											
Model: ME3000SP											
Active power P/P _n [%]	0	10	20	30	40	50	60	70	80	90	100
Frequency [kHz]	[%]	[%]	[%]	[[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
2.1	0.0471	0.0549	0.0424	0.0446	0.0328	0.0405	0.0521	0.0665	0.0792	0.0862	0.1008
2.3	0.0530	0.0464	0.0446	0.0460	0.0311	0.0366	0.0436	0.0614	0.0713	0.0854	0.0943
2.5	0.0686	0.0607	0.0548	0.0505	0.0400	0.0303	0.0400	0.0539	0.0638	0.0767	0.0824
2.7	0.0637	0.0468	0.0542	0.0494	0.0412	0.0352	0.0406	0.0510	0.0624	0.0748	0.0824
2.9	0.0603	0.0441	0.0482	0.0435	0.0427	0.0346	0.0302	0.0392	0.0489	0.0589	0.0664
3.1	0.0555	0.0323	0.0388	0.0395	0.0410	0.0339	0.0295	0.0312	0.0397	0.0480	0.0577
3.3	0.0493	0.0247	0.0297	0.0358	0.0434	0.0350	0.0323	0.0286	0.0350	0.0450	0.0531
3.5	0.0415	0.0230	0.0236	0.0336	0.0350	0.0342	0.0277	0.0241	0.0323	0.0354	0.0412
3.7	0.0376	0.0191	0.0228	0.0267	0.0309	0.0310	0.0275	0.0227	0.0247	0.0307	0.0343
3.9	0.0365	0.0254	0.0226	0.0230	0.0282	0.0318	0.0248	0.0225	0.0233	0.0269	0.0302
4.1	0.0298	0.0197	0.0176	0.0194	0.0226	0.0258	0.0236	0.0193	0.0200	0.0258	0.0285
4.3	0.0335	0.0265	0.0200	0.0231	0.0246	0.0276	0.0253	0.0218	0.0194	0.0205	0.0259
4.5	0.0316	0.0279	0.0231	0.0198	0.0171	0.0200	0.0197	0.0173	0.0172	0.0190	0.0211
4.7	0.0288	0.0266	0.0211	0.0207	0.0212	0.0251	0.0243	0.0207	0.0199	0.0206	0.0216
4.9	0.0223	0.0204	0.0166	0.0149	0.0149	0.0179	0.0175	0.0148	0.0147	0.0166	0.0187
5.1	0.0225	0.0192	0.0172	0.0150	0.0132	0.0143	0.0141	0.0139	0.0156	0.0179	0.0198
5.3	0.0221	0.0225	0.0202	0.0166	0.0159	0.0179	0.0175	0.0158	0.0144	0.0150	0.0166
5.5	0.0223	0.0236	0.0225	0.0211	0.0201	0.0217	0.0224	0.0203	0.0192	0.0174	0.0174
5.7	0.0250	0.0279	0.0269	0.0242	0.0239	0.0220	0.0221	0.0216	0.0190	0.0168	0.0156
5.9	0.0176	0.0202	0.0204	0.0178	0.0176	0.0167	0.0178	0.0166	0.0159	0.0152	0.0138
6.1	0.0146	0.0136	0.0131	0.0129	0.0117	0.0119	0.0118	0.0121	0.0125	0.0138	0.0140
6.3	0.0126	0.0161	0.0160	0.0131	0.0131	0.0119	0.0130	0.0128	0.0130	0.0130	0.0126
6.5	0.0121	0.0162	0.0174	0.0142	0.0138	0.0127	0.0130	0.0129	0.0139	0.0136	0.0123
6.7	0.0120	0.0156	0.0144	0.0134	0.0135	0.0125	0.0120	0.0127	0.0139	0.0148	0.0151
6.9	0.0132	0.0196	0.0180	0.0164	0.0158	0.0147	0.0156	0.0155	0.0163	0.0172	0.0173
7.1	0.0132	0.0182	0.0157	0.0158	0.0147	0.0151	0.0140	0.0153	0.0159	0.0186	0.0188
7.3	0.0135	0.0124	0.0113	0.0119	0.0127	0.0130	0.0126	0.0140	0.0152	0.0168	0.0166
7.5	0.0123	0.0140	0.0132	0.0124	0.0116	0.0118	0.0116	0.0126	0.0143	0.0158	0.0160
7.7	0.0156	0.0206	0.0190	0.0192	0.0188	0.0183	0.0177	0.0188	0.0195	0.0209	0.0206
7.9	0.0187	0.0160	0.0153	0.0132	0.0131	0.0128	0.0124	0.0130	0.0132	0.0145	0.0142
8.1	0.0185	0.0201	0.0193	0.0200	0.0192	0.0192	0.0193	0.0198	0.0209	0.0218	0.0215
8.3	0.0162	0.0121	0.0121	0.0141	0.0140	0.0143	0.0149	0.0156	0.0162	0.0182	0.0184
8.5	0.0180	0.0099	0.0100	0.0109	0.0119	0.0125	0.0131	0.0139	0.0149	0.0153	0.0142
8.7	0.0134	0.0136	0.0138	0.0155	0.0153	0.0152	0.0157	0.0158	0.0176	0.0186	0.0194
8.9	0.0151	0.0112	0.0119	0.0131	0.0131	0.0133	0.0137	0.0140	0.0159	0.0169	0.0159

Page 35 of 188

5.2.5	Commutation notches								
\hat{U}_n (The peak value of the nominal voltage U _n) = <u>325.22</u> V									
Test impedance: 0.4Ω +0.25j									
Operating points		Maximum commutation current (A)	ΔU _{kom} (V)	d _{kom} (=ΔU _{kom} / Û _n) (%)	C	d _{kom} limit (%)			
25% P _{Emax} and 35 % P _{Emax} :		0.681	0.321	0.099	5				
65%P _{Emax} and 75 % P _{Emax} :		0.875	0.413	0.127	5				
>90 % P _{Emax} :		0.988	0.466	0.143		5			

Page 36 of 188

Total Quality. Assured.

Page 37 of 188

5.2.6	TABLE: DC	Injection					Р		
Model: ME3	000SP								
Mains voltag	je: 230V								
Power F	P/Pn			100%	6				
		Measu	urement						
Phas	se L1	Phas	se L2	Phas	se L3		mitation		
0.061A	0.468%						0.5%		
Power P/Pn [%] 66%									
		Measu	urement				noitetien		
Phas	se L1	Phas	se L2	Phas	se L3		nitation		
0.062A	0.472%						0.5%		
Power P/F	Pn [%]			33%	,)				
		Measu	urement						
Phase L1 Phase L2 Phase L3 Limitation									
0.063A	0.063A 0.482% 0.5%								
Remark: The	absolute valu	e of measuren	nents have bee	en taken.					

Total Quality. Assured.

Page 38 of 188

5.4.2	Т	ABLE: Mea	surement of a	active- and re	active power r	anges			Р		
Model	: ME3000SF	þ									
	Test co	ndition		Measurement							
No.	Cos_{ϕ}	U / Un	U [V]	 [A]	PEmax600 *) [W]	Semax600 *) [VA]	Q [Var]	Cos_{ϕ}		
a1		90%	207.26	13.77	2852.55	2854.47	-104.4	42	0.9993		
a3	1.00	100%	230.12	13.08	3007.33	3009.23	-106.	79	0.9994		
a5		109%	250.63	12.03	3012.81	3015.14	118.6	51	0.9992		
b1		95%	218.53	13.61	2672.95	2975.02	-1306	18	0.8985		
b3	max.	100%	230.00	13.21	2731.98	3037.81	-1328	37	0.8993		
B5		109%	250.52	12.11	2733.46	3033.27	-1314	88	0.9012		
c1		90%	207.19	13.93	2612.86	2886.75	1227.	31	0.9051		
c3	max. over-excited	100%	230.07	13.52	2808.46	3110.66	1337.	45	0.9028		
c4	105% 241.44 12.91 2810.40 3116.51 1346.95 0.						0.9018				
PEmax600 [W] 3012.81											
SEmax600 [VA] 3116.51											

intertek Total Quality. Assured.

Page 39 of 188

5.4.3	Active power reduction	ver reduction through setpoint specification P						
Mea	asurement Item	Power Setting [W]	Actual Power [W]	Tolerance of power [W]	∆ P/ Pn [%]			
	100%	3000.00	3001.56	1.56	0.05%			
	90%	2700.00	2703.03	3.03	0.10%			
	80%	2400.00	2396.26	-3.74	-0.12%			
	70%	2100.00	2100.00 2100.46 0.44		0.02%			
	60%	1800.00	800.00 1797.89 -2.11		-0.07%			
	50%	1500.00	1504.56	4.56	0.15%			
	40%	1200.00	1206.09	6.09	0.20%			
	30%	900.00	0.11%					
	20%	600.00	0.17%					
	10%	300.00	302.99	2.99	0.10%			
Limit	ation of Δ P/ Pn	± 5%						
	110% 100% 90% 80% 70% 60% 50% 40% 20% 10% 0 200 0 200	400 60	0 800 Time[s]					
		- Power Lin	nit up Limit	down				
Power grad	ient (100%Pn ->5%Pn) [W/s]:	14.39W/s						
Power grad	ient (5%Pn ->100%Pn) [W/s]:	14.39W/s						
Limitatio	on of gradient [W/s]	Limitation of gradient [W/s] 0.33%Pn – 0.66%Pn						

Page 41 of 188

Page 42 of 188

5.4.4	Acti	ve power	power supply at overfrequency								
Test 1		40%P	Emax (W)	12	205.12	1	0%P _{Emax} (W)		30)1.28	
Setting parameters	s of	f (Hz)	Expected Active power	Measured output Power	Tolerance between measured	Toleranc Limit [%]	e	Tim	e		
P = 100% PEmax Start of pov reduction 50.2 Hz	ver at		[P/ PEmax] [%]	(**)	Expected [△P/ PEmax] [%]		The initial time delay TV <2s	The respo time <i>T</i> an_9 <1:	€ 9 % 9 %	The settling times <20s	
a) 50Hz ± 0.01Hz		50.00	100	3057.19	1.47	< ± 5%					
b)50.25Hz ± 0.01Hz		50.25	98	2895.17	-1.90	< ± 10%	0.40	0.4	0	1.00	
c)50.70Hz ± 0.01Hz		50.70	80	2343.90	-2.20	< ± 10%		0.8	0	1.80	
d)51.40Hz ± 0.01Hz		51.40	52	1524.66	-1.39	< ± 10%		0.8	0	2.20	
e)50.70Hz ± 0.01Hz		50.70	80	2342.13	-2.26	< ± 10%		0.8	0	3.00	
f)50.25Hz ± 0.01Hz		50.25	98	2891.20	-2.04	< ± 10%		0.3	5	2.40	
g)50Hz ± 0.01Hz		50.00	100	3032.51	1.08	< ± 10%	,	0.2	0	0.40	
h)51.65Hz± 0.01Hz		Disconnection Time[ms]:198, Limitation[ms]: 200									
i)50.15Hz± 0.01Hz		Reconnection: 🗌 Yes/ 🔀 No, Limitation: No reconnection is allowed.									
j)50.00Hz± 0.01Hz		Reconnection time: 76.6s									
			Maximal	Rising Grad	ient [%/min]	:8.98%, Li	mitation [%/	′min]: 1	0%		

Page 43 of 188

Test 2	40%F	P _{Emax} (W)	12	205.12	10%	6P _{Emax} (W)	30)1.28
Setting	f (Hz)	Expected	Measured	Tolerance	Tolerance		Time	
ESS:		power	Power	measured	[%]			
P = 60% PEmax (The reduction of the primary energy supply to limit the active power output, or the limiting setting of the active power output must be removed from measuring point c) Start of power reduction at 50.5 Hz s= 5% (40% P / Hz)		output [P/ PEmax] [%]	(W)	P and Expected [△P/ PEmax] [%]		The initial time delay TV <2s	The response times <i>T</i> an_90 % <1s	The settling times <20s
a)50Hz ± 0.01Hz	50.00	60	1854.59	1.82	< ± 5%			
b)50.40Hz ± 0.01Hz	50,40	60	1855.05	1.84	< ± 10%			
c)50.70Hz ± 0.01Hz	50.70	52	1553.98	-0.20	< ± 10%	0.40	0.80	2.40
d)51.40Hz ± 0.01Hz	51.40	24	701.92	-0.60	< ± 10%		0.80	3.00
e)50.70Hz ± 0.01Hz	50.70	52	1555.00	-0.17	< ± 10%		0.80	4.00
f)50.10Hz ± 0.01Hz	50.10	60-100	Maximal	Rising Gradie	ent [%/min]: §	9.05, Limita	ation [%/min]: 10%
g)50Hz ± 0.01Hz	50.00	100						

Page 44 of 188

Total Quality. Assured.

Page 46 of 188

5.4.6	Act	ive powe	r supply at	underfreque	ency						Р
Test 1		100%F	P _{Emax} (W)	30	012.80		109	%P _{Emax} (W)		3	01.28
Setting	of	f (Hz)	Expected Active power	Measured output Power	Tolerance between measured	Tole L [erance imit [%]		Т	ime	
the ESS:P 100%	=-		[P/ PEmax]	(**)	Expected			The initial time	٦ res tir	The Donse mes	The settling times
Start of pov reduction 49.8 Hz	ver at		[70]		[%]			delay TV <2s	Tan <	_90 % < 1s	<20s
a) 50Hz ± 0.01Hz		50.00	-100	-3048.02	-1.17	< :	± 5%				
b)49.75Hz ± 0.01Hz		49.75	-95	-2768.02	3.12	< ±	- 10%	0.20	0	.50	2.60
c)48.80Hz ± 0.01Hz		48.80	0	124.29	4.13	< ±	- 10%		0	.90	2.00
d)47.60Hz ± 0.01Hz		47.60	100	3049.15	1.21	< ±	- 10%		0	.80	1.40
e)48.80Hz ± 0.01Hz		48.80	0	128.89	4.28	< ±	- 10%		0	.80	2.80
f)49.85Hz ± 0.01Hz		49.85	-100	-2960.72	1.73	< ±	10%		0	.80	9.40
g)50Hz ± 0.01Hz		50.00	-100	-3052.69	-1.32	< ±	: 10%				
h)47.35Hz± 0.01Hz			Dis	connection	Time[ms]: 1	: 198, Limitation[ms]: _200					
i)47.60Hz± 0.01Hz		Reconnection: Yes/ Xo, Limitation: No reconnection is allowed.						d.			
j)50.00Hz± 0.01Hz				R	econnectior	n time	e: 70.8s				
			Maximal	Rising Grad	ient [%/min]	: 8.86	6%, Lim	itation [%	/min	: 10%	

Page 47 of 188

Test 2	100%	P _{Emax} (W)	30	012.80	10%	6P _{Emax} (W)	30	1.28
Setting	f (Hz)	Expected	Measured	Tolerance	Tolerance		Time	
parameters of the		Active	output	between	Limit			
ESS:		power	Power	measured	[%]			
P = 10% PEmax		output	(W)	P and		Tho	Tho	Tho
(The reduction of		[P/		Expected		initial	response	sottling
the primary		PEmax]		[△P/		time	times	times
energy supply to		[%]		PEmax]		delay	$T_{\rm op} = 0.0\%$	<20s
limit the active				[%]			/an_90 %	~203
power output, or						<2s	<13	
the limiting setting						120		
of the active								
power output								
must be removed								
nom measuring								
Start of power								
reduction at 49.8								
a)50Hz + 0.01Hz								
<i>x</i>) <i>cci</i> = <i>zci ci i i i</i>	50.00	10	316.90	0.52	< ± 5%			
b)49.75Hz ±	40.75	4.5	40.4.00	4.07	400/		0.00	1.00
0.01Hz	49.75	15	484.30	1.07	< ± 10%	0.20	0.90	1.20
c)49.80Hz ±	18 80	100	3062.00	1.64	< ± 10%		0.80	1 60
0.01Hz	40.00	100	3002.09	1.04	< ± 10 %		0.80	1.00
d)47.60Hz ±	47 60	100	3047 62	1 16	< + 10%			
0.01Hz	11.00	100	0011.02	1.10	₹ 1070			
e)48.80Hz ±	48.80	100	3062.88	1.66	< ± 10%			
0.01Hz	10100		0002.00		1 1070			
t)49.85Hz ±	49.85	10	346.31	1.49	< ± 10%		0.80	5.60
0.01Hz		-		-				
g)50Hz ± 0.01Hz	50.00	10	316.92	0.52	< ± 10%			
			l	l	l			

Total Quality. Assured.

Page 50 of 188

5.4.8	.2 TAE		Р						
	Cos_ϕ	Power	U [V]	P [W]	Q [Var]	S [VA]	cos φ	∆	Limit ∆ Q / P _{Emax}
Σ	SEmax > 4.6	6kVA							
c)			207.25	1511.14	-99.70	1518.08	0.9954	Pass for reactive I	voltage- estriction
		50%PEmax	229.53	1515.41	-742.40	1687.49	0.8980	-0.531	≤ ±4%
	0.90		253.21	1518.43	-727.84	1683.86	0.9018	-0.045	≤ ±4%
	under-excited		207.43	2879.37	-107.77	2849.46	0.9965	Pass for reactive i	voltage- estriction
		SEmax	229.99	2732.63	-1328.71	3038.54	0.8993	-0.701	≤ ±4%
			253.35	2717.89	-1304.72	3014.84	0.9015	0.098	≤ ±4%
			206.66	1509.05	89.54	1513.97	0.9968	Pass for reactive I	voltage- estriction
		50%PEmax	229.81	1515.67	-501.16	1596.38	0.9494	-0.271	≤ ±4%
	0.95 under-excited		252.91	1519.30	-516.25	1604.62	0.9468	-0.774	≤ ±4%
		SEmax	207.15	3026.51	116.35	3029.24	0.9991	Pass for reactive I	voltage- estriction
			230.03	2898.68	-945.49	3048.98	0.9507	-0.291	≤ <u>+</u> 4%
			253.14	2890.99	-892.86	3025.73	0.9555	1.463	≤±4%
d)			206.70	1516.71	704.00	1672.14	0.9071	-1.57%	≤ ±4%
		50% PEmax	229.86	1512.77	720.34	1675.52	0.9029	-2.11%	≤ ±4%
	0.90	T Emax	252.93	1507.67	104.42	1511.53	0.9975	Pass for reactive	voltage- estriction
	over-excited		207.18	2614.30	1227.46	2888.12	0.9052	2.85%	≤ ±4%
		SEmax	230.06	2810.15	1337.55	3112.23	0.9029	-0.81%	≤ ±4%
			253.16	3022.82	105.12	3025.27	0.9992	Pass for reactive i	voltage- estriction
			206.67	1521.21	467.52	1591.43	0.9559	0.09%	≤ ±4%
		50% PEmax	229.52	1516.41	483.56	1591.64	0.9527	-0.44%	≤ ±4%
	0.95		252.60	1510.05	102.37	1513.51	0.9977	Pass for reactive	voltage- estriction
	over-excited		207.23	2747.94	855.02	2877.89	0.9548	2.85%	≤ ±4%
		SEmax	230.12	2958.09	938.67	3103.45	0.9532	0.07%	≤ <u>+</u> 4%
			253.16	3029.20	122.99	3031.86	0.9991	Pass for reactive i	voltage- estriction

Total Quality. Assured.

Page 52 of 188

Report no. 200320118GZU-001

5.4.8.3	curve	Р					
3) Test steps f	or supply-depe	endent EZE a	ccuracy (chara	acteristic curve	e)		
Step	Pdc[W]	P[W]	Q[Var]	Cosφ	Qdesired	Δ Q / P _{Emax}	Limitation
100%	2953.81	2740.87	-1311.65	0.9020	-1358.46	1.55%	± 4%
90%	2886.51	2681.89	-1143.15	0.9199	-1099.28	-1.46%	± 4%
80%	2563.64	2391.27	-876.43	0.9389	-850.62	-0.86%	± 4%
70%	2231.34	2088.40	-624.77	0.9580	-610.84	-0.46%	± 4%
60%	1922.96	1804.51	-381.14	0.9784	-372.11	-0.30%	± 4%
50%	1604.64	1507.34	-87.95	0.9956	0.00	-2.92%	± 4%
40%	1409.99	1324.59	-79.97	0.9978	0.00	-2.65%	± 4%
30%	971.97	909.31	-78.19	0.9959	0.00	-2.60%	± 4%
20%	662.96	612.82	-80.52	0.9914	0.00	-2.67%	± 4%
30%	970.03	907.53	-76.48	0.9959	0.00	-2.54%	± 4%
40%	1278.41	1201.04	-77.43	0.9975	0.00	-2.57%	± 4%
50%	1593.44	1498.16	-83.03	0.9983	0.00	-2.76%	± 4%
60%	1915.16	1798.38	-377.68	0.9787	-372.11	-0.19%	± 4%
70%	2242.36	2100.34	-624.42	0.9585	-610.84	-0.45%	± 4%
80%	2551.55	2382.36	-872.78	0.9390	-850.62	-0.74%	± 4%
90%	2875.13	2673.78	-1139.05	0.9200	-1099.28	-1.32%	± 4%
100%	2946.29	2734.90	-1314.88	0.9012	-1358.46	1.45%	± 4%
		P(t), Q(t), 0	$Q_{set}(t), Cos_{\phi}(t)$, tolerance(t)	Diagram		

TRF No. VDE-AR-N 4105d

Page 53 of 188

Total Quality. Assured.

Page 55 of 188

5.5.2, 5.5.3, 5.5.4	TABLE: Inte	rface switch	n (Functional	safe	ety)			Р
Integrated ir	nterface switc	h						
Complied w	ith DIN EN 62	2109-2						
Switch manufac	cturer and typ	e:						
1, Hongfa HF16	61F-W							
2, Panasonic, A	LFG2PF12							
Response time	of interface s	witch for ir	ntegrated NS	prot	ection: Ma	ax.10ms		
The max. initial	short-circuite	ed current o	f PGU lk": 13	4				
String	1 U _D	c = Un	50Vdc	U	ac = Un	230Vac	P = (W)	3.0K
Component No		Fault			Observati	ion		
EC2 in communication boardS/CThe PCE shutdown immediately, and disconne from the grid. No hazards							d disconnect	
C196		S/C			The PCE	can operate n cation fails. No	ormally, but t hazards	the
C197 S/C					The PCE switch off immediately, and disconnect from the grid, error code "ID17, ID18, ID19" display. No hazards			
RY1		S/C		The PCE check relay fail before power on, error code "ID55, ID77" display. No hazards				
HCT (12-13)		S/C)			The PCE from the g hazards	switch off imm grid, error code	ediately, and e "ID10" displ	d disconnect lay. No
Q2 (C-G)		S/C		The PCE shutdown immediately, components Q2,Q8, R26,R27, Q4, Q24 damaged. No hazards				
Q2 (C-E)		S/C			The PCE shutdown immediately, components Q8, C17, R44, Q3, C10, R25, Q7, R37 damaged No bazards			
Q3 (C-G)		S/C			The PCE Q3, R28, hazards	shutdown im R29, Q5, and	mediately, c U23 damag	components ed. No
Q3 (C-E)		S/C			The PCE Q7, C16, damaged	shutdown im R39, R37, R38 J. No hazards	mediately, c 3, Q8, C17, a	components nd R44
Q14		S/C			The PCE Q14, R80	shutdown im , R73, and Q1	mediately, c 5 damaged.	components No hazards
QD2 (C-G) S/C					The PCE QD2, R76 No hazar	shutdown im 6, R78, Q18, Q	mediately, c D3 and U30	components damaged.
QD2 (C-E) S/C QD No					The PCE QD3, R96 No hazar	shutdown im 5, R94, Q21, Q ds	mediately, c D4 and U33	components damaged.
QD1 (C-E)		S/C		The PCE shutdown immediately, components QD4, R93, R95, and QD2 damaged. No hazards				components . No hazards
QD1 (C-G)		S/C			The PCE shutdown immediately, components QD1, Q18, R76, and R83 damaged. No hazards			

Page 56 of 188

Report no. 200320118GZU-001

EC2 in main board	S/C	The PCE shutdown immediately, components Q14, Q19, Q2, Q8, QD1 and QD3 damaged. No hazards
RD1	O/C	The PCE switch off immediately, and disconnect from the grid, error code "ID29, ID25" display. No hazards
RD5	O/C	The PCE switch off immediately, and disconnect from the grid, error code "ID29, ID25" display. No hazards
Q54 (D-S)	S/C	The PCE shutdown immediately, components Q62, Q63, R104, C63, R105 and Q64 damaged. No hazards
Q60 (D-S)	S/C	The PCE shutdown immediately, components Q64, Q65, R106, C65, R103 and Q66 damaged. No hazards
C39	S/C	The PCE shutdown immediately, components RT618, D5 and D8 damaged. No hazards
EC9	S/C	The PCE shutdown immediately, and disconnect from the grid. No hazards
EC11	S/C	The PCE shutdown immediately, and disconnect from the grid. No hazards
EC13	S/C	The PCE shutdown immediately, and disconnect from the grid. No hazards
EC18	S/C	The PCE shutdown immediately, and disconnect from the grid. No hazards
Q24 (G-D)	S/C	The PCE shutdown immediately, components Q24, R127 and U6 damaged. No hazards
Q24 (D-S)	S/C	The PCE shutdown immediately, components O24, R137, R138, and R135 damaged. No hazards
ECF31	S/C	The PCE switch off immediately, and disconnect from the grid, error "communication fails" display. No hazards

Supplementary information:

SC: Short-circuited; OC: Open-circuited; O/L: Overloaded.

During the test:

Fire do not propagate beyond the EUT; Equipment do not emit molten metal; Enclosures do not deform to cause non-compliance with the standard.

Page 57 of 188

5.5.7.2 &5.5.7.4	TABLE	: Protection	device and	settings			Р			
OV Stage 2	Set value		Measured		Limitation	Test cond	ition			
No.		L1-N	L2-N	L3-N						
4	1.25Un	286.92V			+/-1%Un	1, applying ramp test, s	start of <282.9 V,			
1	100ms	81ms			≤200ms	and ramp to >292.1 V, step voltage length is <1.15 V, and step time				
	1.25Un	287.24V			+/-1%Un	is >400ms				
2	100ms	76ms			≤200ms	2, applying Jump test, s	start of >292 1 V step			
	1.25Un	287.23V			+/-1%Un	voltage length is >9.2 \	/, and step time			
3	100ms	75ms			≤200ms	is >400ms				
4	1.25Un	287.10V			+/-1%Un					
4	100ms	77ms			≤200ms					
_	1.25Un	287.28V			+/-1%Un					
5	100ms	77ms			≤200ms					

OV Stage 1 No.		Trip time [s]	Limitation [s]	Test condition
1	Set value 1.10Un	493.0s	450-550	Operation under nominal voltage for 10min, then jumped from Un to 1.12Un.
2	100ms	No disconnect	No disconnect	Operation under nominal voltage for 10min, then jumped from Un to 1.08Un.
3		313.4s	225 - 375	Operation under 1.06 voltage for 10min, then jumped from 1.06Un to 1.14Un.

Page 58 of 188

UV Stage 2	Set value		Measured		Limitation	Test condition			
No.		L1-N	L2-N	L3-N	[ms]				
1	0.45Un	104.13V			+/-1%Un	1, applying ramp test, start of >108.1 V,			
I	300ms	375ms			300-400ms	and ramp to <98.9V, step voltage length is <1.15 V, and step time			
2	0.45Un	104.13V			+/-1%Un	is >500ms			
2	300ms	373ms			300-400ms	2, applying Jump test, start			
2	0.45Un	104.15V			+/-1%Un	voltage length is >9.2 V, and step time			
3	300ms	371ms		300-400]is >500ms			
4	0.45Un	104.12V			+/-1%Un				
4	300ms	328ms			300-400ms				
F	0.45Un	104.12V			+/-1%Un				
5	300ms	368ms			300-400ms				

UV Stage 1	Set value	Measured			Limitation	Test condition			
No.		L1-N	L2-N	L3-N	ព្រាទ្យ				
1	0.8Un	184.71V			+/-1%Un	1, applying ramp test, start			
I	3s	3.050s			3-3.1s	of >188.6 V, and ramp to <pre></pre>			
2	0.8Un	184.71V			+/-1%Un	<1.15 V, and step time is >3.2s			
2	3s	3.040s			3-3.1s	2, applying Jump test, start			
2	0.8Un	184.71V			+/-1%Un	<179.4V, step voltage length			
3	3s	3.040s			3-3.1s	is >9.2 V, and step time is >3.2s			
4	0.8Un	184.70V			+/-1%Un				
4	3s	3.050s			3-3.1s				
F	0.8Un	184.70V			+/-1%Un				
Э	3s	3.060s			3-3.1s				

Page 59 of 188

OF	Set		I	Measur	ed			Remark		
No.	value		-	Trip val	ue		Limitation	, applying ramp test, start of <51.4Hz,		
1	51.5Hz	51.50	51.50	51.49	51.50	51.50	+/-0.05Hz	length is <0.025 Hz, and step time is >400ms		
2	100ms	44ms	80ms	82ms	56.8ms	55ms	≤ 200	2, applying Jump test, start of <51.4Hz, and jump to >51.6Hz, step frequency length is >0.2Hz, and step time is >400ms		
UF	Set		I	Measur	ed		Limitation	Remark		
UF No.	Set value		٦ -	Measur Trip val	ed ue		Limitation [ms]	Remark 1, applying ramp test, start of >47.6Hz,		
UF No. 1	Set value 47.5Hz	47.50	47.52	Vleasur Trip val 47.52	ed ue 47.51	47.52	Limitation [ms] +/-0.05Hz	Remark 1, applying ramp test, start of >47.6Hz, and ramp to <47.4Hz, step frequency length is <0.025 Hz, and step time is >400ms		

Page 60 of 188

Page 61 of 188

Page 62 of 188

Page 63 of 188

intertek Total Quality. Assured.

Page 64 of 188

5.5.8	8, 5.5.9	TABLE: Indication / protection of NS protection		Р			
1.	The last	5 fault indication can be read	🛛 Pass 🗌 Failed				
	Fault 1:		Error message display				
	Fault 2:		Error message display				
	Fault 3:		Error message display				
	Fault 4:		Error message display				
	Fault 5:		Error message display				
2.	Fault ind 3s	cation can be read after a supply interruption \leq	🛛 Pass 🗌 Failed				
	Fault 1:		Error message display				
	Fault 2:		Error message display				
	Fault 3:		Error message display				
	Fault 4:		Error message display				
	Fault 5:		Error message display				
3.	The protection settings can be read on PGU or data		🛛 Pass 🗌 Failed				
	Interface	equipment	Interface equipment: remote monitor				
4.	The NS protection settings shall be protected.		Pass 🗌 Failed				
			Protection type: Integrated NS protection				
5.	If all prot	ection settings are fixed	🛛 Pass 🗌 Failed				

Total Quality. Assured.

Page 65 of 188

Report no. 200320118GZU-001

5.5.10	ls	slan	d detectio	n								Ρ)
No.	PEUT (% of EU rating	-1) IT (3)	Reactive load (% of QL in 6.1.d)1)	PAC ²⁾ (% of nominal)	QAC ³⁾ (% of nominal)	Run on time (s)	PEUT (W)	Actual Qf	VDC	Rei	ma	rks4))
1	100		100	0	0	320.00	3008.00	1.00	51	Test	А	at	BL
2	66		66	0	0	312.00	1833.00	1.00	51	Test	В	at	BL
3	33		33	0	0	285.00	991.00	1.00	51	Test	С	at	BL
4	100		100	-5	-5	267.00	3008.00	0.97	51	Test	А	at	IB
5	100		100	-5	0	300.00	3008.00	0.97	51	Test	А	at	IB
6	100		100	-5	5	281.00	3008.00	0.93	51	Test	А	at	IB
7	100		100	0	-5	200.00	3008.00	1.02	51	Test	А	at	IB
8	100		100	0	5	282.00	3008.00	0.98	51	Test	А	at	IB
9	100		100	5	-5	173.00	3008.00	1.07	51	Test	А	at	IB
10	100		100	5	0	263.00	3008.00	1.05	51	Test	А	at	IB
11	100		100	5	5	254.00	3008.00	1.02	51	Test	А	at	IB
12	66		66	0	-5	182.00	1833.00	1.02	51	Test	В	at	IB
13	66		66	0	-4	295.00	1833.00	1.03	51	Test	В	at	IB
14	66		66	0	-3	270.00	1833.00	1.03	51	Test	В	at	IB
15	66		66	0	-2	234.00	1833.00	1.01	51	Test	В	at	IB
16	66		66	0	-1	229.00	1833.00	1.01	51	Test	В	at	IB
17	66		66	0	1	277.00	1833.00	1.00	51	Test	В	at	IB
18	66		66	0	2	253.00	1833.00	0.98	51	Test	В	at	IB
19	66		66	0	3	223.00	1833.00	0.98	51	Test	В	at	IB
20	66		66	0	4	267.00	1833.00	0.97	51	Test	В	at	IB
21	66		66	0	5	215.00	1833.00	0.97	51	Test	В	at	IB
22	33		33	0	-5	241.00	991.00	1.01	51	Test	С	at	IB
23	33		33	0	-4	251.00	991.00	1.02	51	Test	С	at	IB
24	33		33	0	-3	260.00	991.00	1.02	51	Test	С	at	IB
25	33		33	0	-2	225.00	991.00	1.03	51	Test	С	at	IB
26	33		33	0	-1	224.00	991.00	1.03	51	Test	С	at	IB
27	33		33	0	1	260.00	991.00	0.99	51	Test	С	at	IB
28	33		33	0	2	207.00	991.00	0.98	51	Test	С	at	IB
29	33		33	0	3	203.00	991.00	0.98	51	Test	С	at	IB
30	33		33	0	4	239.00	991.00	0.97	51	Test	С	at	IB
31	33		33	0	5	196.00	991.00	0.97	51	Test	С	at	IB

Remark:

¹⁾ PEUT: EUT output power

²⁾ PAC: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

³⁾ QAC: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0% test condition value.

⁴⁾ BL: Balance condition, IB: Imbalance condition.

⁵⁾ *Note: test condition A (100%): If any of the recorded run-on times are longer than the one recorded for the rated balance condition, i.e. test procedure 6.1 f), then the non-shaded parameter combinations (no.32~47) also require testing. Page 66 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

Page 67 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

intertek Total Quality. Assured.

Page 68 of 188

5.6	Connection conditions and synchronization					
DC input:		AC output:		Rated Output Power		
	50Vdc	230Vac; 50Hz 3.0				
M	easure Item	Reconnect	ion?	Reconnection Time (>60s)		
f _{ist} <47.45Hz		🗌 Yes	🖾 No	Cannot reconnection		
f _{ist} ≥ 47.55Hz	Z	🛛 Yes	🗌 No	69s		
f _{ist} > 50.15Hz	Z	🗌 Yes	🖾 No	Cannot reconnection		
f _{ist} ≤ 50.05Hz	Ζ	🛛 Yes	🗌 No	66s		
U _{ist} < 84% U	n	🗌 Yes	🖾 No	Cannot reconnection		
U _{ist} ≥ 86% U	n	Yes 🗌 No		70s		
U _{ist} > 111%	Un	🗌 Yes	🖾 No	Cannot reconnection		
U _{ist} ≤ 109%	Un	🛛 Yes	🗌 No	66s		

Page 69 of 188

Page 70 of 188

Page 71 of 188

Total Quality. Assured.

τοιτοκ

Page 72 of 188

Report no. 200320118GZU-001

1.3, 1.4	0.62, -173.3°	0.15, 90°	0.62, -6.9°	D	
2.3, 2.4, 3.3, 3.4	0.76, -161.1°	0.50, 90°	0.76, -19.1°	D	UVRT
4.3, 4.4	0.93, -152.8°	0.85, 89.9°	0.93, -27.4°	D	
5.3, 5.4	1.08, -144.5°	1.25, 89.1°	1.06, -36.3°	D	
6.3, 6.4	1.06, -145.5°	1.20, 89.3°	1.05, -35.1°	D	OVRT
7.3, 7.4	1.04, -146.6°	1.15, 89.4°	1.04, -33.9°	D	

Diagram:

For each test the following diagrams shall be figured since t1-1s (one second before fault entry) till t2+6s (six seconds after fault clear), zoomed if needed:

Empty load tests:

- line to line voltages and line to neutral voltages (signal)
- full period-RMS value of line to neutral voltages with updated rate of 1/ms.

Tests with sample:

- line to line voltage and line to neutral voltage (signal)
- line currents (signal)
- full period-RMS value of line to neutral voltage with updated rate of 1/ms
- full period-RMS value of line currents with updated rate of 1/ms (active and reactive part additionally)
- active power and reactive power in pos. sequence with updated rate of 1/ms
- voltage and current in pos. sequence with updated rate of 1/ms

Test condition:

intertek Total Quality. Assured.

Page 73 of 188

Notes on calculations:	Used formula	Remarks
General remarks: The average grid frequency over the measured interval is calculated from zero-crossings of the sine function. Only 10 cycles before the dip are used for this calculation. RMS-Calculations are performed with a moving window, which is determined by $T = 1/f$ and must remain constant. The number of samples N per calculation window is determined by the sampling rate $f_{s.}$ N has to be even and an integer number nearest to the product T^*f_s .	$ \underline{U}_{1} = \frac{\sqrt{2}}{N} \cdot \sum_{n=0}^{N} u(n) \cdot e^{-j(\frac{2\pi n}{N})} $ $ \underline{I}_{1} = \frac{\sqrt{2}}{N} \cdot \sum_{n=0}^{N} i(n) \cdot e^{-j(\frac{2\pi n}{N})} $	 Calculated for each phase A,B,C N: Amount of samples per window n: number of sample
Performed Calculation	$\underline{U}^{+} = \frac{1}{3} \cdot (\underline{U}_{1A} + \underline{U}_{1B} \cdot e^{+j\frac{2\pi}{3}} + \underline{U}_{1C} \cdot e^{-j\frac{2\pi}{3}})$ $\underline{I}^{+} = \frac{1}{3} \cdot (\underline{I}_{1A} + \underline{I}_{1B} \cdot e^{+j\frac{2\pi}{3}} + \underline{I}_{1C} \cdot e^{-j\frac{2\pi}{3}})$	
Complex values for the fundamental harmonic	$P = 3 \cdot U^+ \cdot I^+ \cdot \cos(\varphi)$ $Q = 3 \cdot U^+ \cdot I^+ \cdot \sin(\varphi)$	Phase-angle : Angular difference between current and voltage $\varphi = (\varphi_T - \varphi_T)$
Positive sequence component of the voltage and current	$ \frac{1}{I_r = I^+ \cdot \sin(\varphi)} $ $ I_{tot} = I^+ $	
Power:	$U_{rms} = \sqrt{\frac{1}{N} \cdot \sum_{n=0}^{N} (u(n) - \overline{u})^2}$ $\overline{u} = \frac{1}{N} \cdot \sum_{n=0}^{N} u(n)$	- Calculated for each phase A,B,C or L1, L2, L3

Page 74 of 188

Verificatio	on of c	lynamic networ	k support						Р		
Short-o genera	circuite ator te	ed power at rminal [VA]	10K								
NS pr	otectio	on settings	See table 5.5 for detail.								
	No.	Parameter	Phase ref.	Time ref.	unit		Re	sult			
	0	Test number				1.1	2.1	3.1	4.1		
	1	Date			dd.mm.yyyy	16-J	une -2020	to 22-June	-2020		
	2	Time (start of test)			hh:mm:ss.f		See	graph			
General	3	Fault type (phase)				A	А	А	А		
	4	Setting voltage depth	Line to line		p.u.	0.15	0.5	0.5	0.85		
	5	Setting dip duration			ms	150	1500	1500	60000		
Info.	6	Point of fault entry	Total		ms	20ms					
	7	Point of fault clearance	Total		ms	20ms					
	8	Fault duration in empty load test	Total		ms	159.69	1516.88	1514.09	60015		
	9	Voltage	Total	t1+100ms	p.u.	0.15	0.5	0.5	0.85		
	10	depth/height in empty load test	Positive sequence	t0 t2 and t1-10s to t1	p.u.	0.15	0.5	0.5	0.85		
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.01	1.01	1.00	1.01		
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.						
	13	A otivo	Total	41 40a 4a		1.009	0.915	0.887	1.008		
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1</td><td>p.u.</td><td></td><td></td><td></td><td></td></t1<>	14	power	Positive sequence	t1	p.u.						
	15	Boostivo	Total	41 40a 4a		0.040	0.488	-0.468	0.040		
	16	power	Positive sequence	t1-105 to	p.u.						
	17	Cos _φ		t1-10s to t1		0.9992	0.8826	0.8837	0.9992		
During dip t1 to	18	Voltage	Line to neutral	t1+100ms to t2- 20ms	p.u.	0.15	0.50	0.50	0.85		

Total Quality. Assured.

Page 75 of 188

t2	t2 19		Phase 1		p.u.	0.072	0.087	0.038	0.070
	20	Line current	Phase 2	t1+60ms					
21		Phase 3							
	22		Phase 1			0.062	0.083	0.052	0.073
	23	Line current	Phase 2	t1+100ms	p.u.				
	24		Phase 3						
	25	A ative	Total	t1+100ms	p.u.	0.009	0.026	0.015	0.045
	26	power	Positive sequence	to t2- 20ms					
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.01	1.01	1.00	1.01
	28	Active power	Positive sequence.	t2+3s to t2+10s	p.u				
	29		Total			1.004	0.915	0.888	1.010
	39	Active power rising time	Positive sequence		S	0.187	0.128	0.187	0.116
After dip	31	Reactive	Positive sequence	t2+3s to	p.u.				
> t2	32	power	Total	12+105		0.040	0.487	-0.469	0.040
	33	Reactive power rising time	Positive sequence		S	0.187	0.128	0.187	0.116
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No	Yes			

Page 76 of 188

Page 78 of 188

Page 79 of 188

Page 80 of 188

Report no. 200320118GZU-001

TRF No. VDE-AR-N 4105d

Page 81 of 188

Page 82 of 188

Page 83 of 188

Page 85 of 188

Page 88 of 188

Page 89 of 188

Verificatio	on of c	lynamic networ	k support						Р		
Short-o genera	circuite ator te	ed power at rminal [VA]	10К								
NS pr	otectio	on settings	See table 5.5 for detail.								
	No.	Parameter	Phase ref.	Time ref.	unit		Re	esult			
	0	Test number				5.1	6.1	7.1	1.2		
	1	Date			dd.mm.yyyy	16-	June-2020	to 22-June-	2020		
	2	Time (start of test)			hh:mm:ss.f		See	graph			
	3	Fault type (phase)				A	А	А	А		
General Info.	4	Setting voltage depth	Line to line		p.u.	1.25	1.20	1.15	0.15		
	5	Setting dip duration			ms	100	5000	60000	150		
	6	Point of fault entry	Total		ms	20ms					
	7	Point of fault clearance	Total		ms	20ms					
	8	Fault duration in empty load test	Total		ms	103.09	5022.52	60021	159.19		
	9	Voltage	Total	t1+100ms	p.u.	1.25	1.20	1.15	0.15		
	10	depth/height in empty load test	Positive sequence	to t2 and t1-10s to t1	p.u.						
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.01	1.00	1.00	1.00		
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.	1.013	1.013	1.017	0.209		
	13	A otivio	Total	41 40a 4a		1.013	1.013	1.017	0.209		
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1-105 to t1</td><td>p.u.</td><td></td><td></td><td></td><td></td></t1<>	14	power	Positive sequence	t1-105 to t1	p.u.						
	15	Depativo	Total	14 40-1-		-0.001	-0.001	-0.001	0.027		
	16	power	Positive sequence	t1-10s to t1	p.u.						
	17	Cos _φ		t1-10s to t1		0.9991	0.9992	0.9992	0.9918		
During dip t1 to	18	Voltage	Line to neutral	t1+100ms to t2- 20ms	p.u.	1.25	1.20	1.15	0.15		
ť2	19	Line current	Phase 1	t1+60ms	p.u.	0.092	0.091	0.102	0.064		

Page 90 of 188

	20		Phase 2						
	21		Phase 3						
	22		Phase 1		p.u.	0.074	0.063	0.082	0.061
	23	Line current	Phase 2	t1+100ms					
	24		Phase 3						
	25	Active power	Total	t1+100ms	p.u.	0.041	0.042	0.067	0.009
	26		Positive sequence	to t2- 20ms					
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active power	Positive sequence.	t2+3s to t2+10s	p.u				
	29		Total			1.013	1.013	1.017	0.203
	39	Active power rising time	Positive sequence		S	0.110	0.107	0.103	0.041
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			0.004	-0.001	-0.001	0.030
	33	Reactive power rising time	Positive sequence	-	S	0.110	0.107	0.103	0.041
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No	Yes			

Page 91 of 188

Page 92 of 188

Page 93 of 188

Page 94 of 188

Page 95 of 188

Page 96 of 188

Page 97 of 188

Page 98 of 188

Page 99 of 188

Page 100 of 188

Page 101 of 188

intertek

Total Quality. Assured.

Page 102 of 188

Page 104 of 188

Verificatio	on of c	lynamic networ	k support						Р		
Short-o genera	circuite ator te	ed power at rminal [VA]	10K								
NS protection settings			See table 5.5 for detail.								
	No.	Parameter	Phase ref.	Time ref.	unit		Res	ult			
	0	Test number				2.2	3.2	4.2	5.2		
	1	Date			dd.mm.yyyy	16-Jı	une-2020 to	22-June-	2020		
	2	Time (start of test)			hh:mm:ss.f		See g	Iraph			
	3	Fault type (phase)				А	А	А	A		
General Info.	4	Setting voltage depth	Line to line		p.u.	0.5	0.5	0.85	1.25		
	5	Setting dip duration			ms	1500	1500	60000	100		
	6	Point of fault entry	Total		ms	20ms					
	7	Point of fault clearance	Total		ms	20ms					
	8	Fault duration in empty load test	Total		ms	1516.89	1514.09	60015	103.09		
	9	Voltage	Total	t1+100ms	p.u.	0.50	0.50	0.85	1.25		
	10	depth/height in empty load test	Positive sequence	to t2 and t1-10s to t1	p.u.						
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00	1.00	1.00		
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.						
	13	Activo	Total	t1 100 to		0.209	0.208	0.208	0.210		
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1-105 to</td><td>p.u.</td><td></td><td></td><td></td><td></td></t1<>	14	power	Positive sequence	t1-105 to	p.u.						
	15	Boostivo	Total	41. 10a ta		0.484	-0.465	0.027	-0.001		
	16	power	Positive sequence	t1-10s to t1	p.u.						
	17	Cos _φ		t1-10s to t1		0.3958	0.4071	0.9917	0.9863		
During dip t1 to	18	Voltage	Line to neutral	t1+100ms to t2- 20ms	p.u.	0.50	0.50	0.85	1.25		

Total Quality. Assured.

Page 105 of 188

t2	19		Phase 1			0.090	0.029	0.068	0.076
	20 Line cur	Line current	Phase 2	t1+60ms	p.u.				
21		Phase 3							
	22		Phase 1			0.086	0.034	0.064	0.077
	23	Line current	Phase 2	t1+100ms	p.u.				
	24		Phase 3						
	25	A ative	Total	t1+100ms	p.u.	0.016	0.016	0.046	0.061
	26	Active	Positive sequence	to t2- 20ms					
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active power	Positive sequence.	t2+3s to t2+10s	p.u				
	29		Total			0.208	0.224	0.208	0.210
	39	Active power rising time	Positive sequence		S	0.078	0.183	0.044	0.095
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			0.484	-0.479	0.027	-0.001
	33	Reactive power rising time	Positive sequence		S	0.078	8.37	0.044	0.095
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No		Ye	:5	

Page 106 of 188

intertek Total Quality. Assured.

Page 107 of 188

Page 109 of 188

Page 110 of 188

Page 111 of 188

Report no. 200320118GZU-001

Wom wo

Page 112 of 188

Page 113 of 188

Page 115 of 188

Page 116 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

Page 118 of 188

Verification of dynamic network support								Р		
Short-circuited power at generator terminal [VA]			10K							
NS protection settings			See table 5.5 for detail.							
	No.	Parameter	Phase ref.	ise ref. Time ref. unit Result						
	0	Test number				6.2	7.2	1.3	2.3	
	1	Date			dd.mm.yyyy	16-June-2020 to 22-June-2020				
	2	Time (start of test)			hh:mm:ss.f	See graph				
	3	Fault type (phase)				А	А	D1	D1	
	4	Setting voltage depth	Line to line		p.u.	1.20	1.15	0.15	0.50	
	5	Setting dip duration			ms	5000	60000	150	1500	
General Info.	6	Point of fault entry	Total		ms	20ms				
	7	Point of fault clearance	Total		ms	20ms				
	8	Fault duration in empty load test	Total		ms	5022.52	60021	158.72	1512.84	
	9 Voltage		t1+100ms				0.62	0.76		
		Voltage depth/height in empty	Total	to t2 and t1-10s to t1	p.u.	1.20	1.15	0.15	0.50	
								0.62	0.76	
	10	load test	Positive sequence		p.u.			0.46	0.67	
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00	1.00	1.00	
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.					
	13	A otiv o	Total	t1-10s to t1	p.u.	0.211	0.210	1.013	0.913	
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td></td><td>-</td><td></td><td></td></t1<>	14	power	Positive sequence				-			
	15	Reactive power	Total	t1-10s to t1	p.u.	-0.001	-0.001	0.000	0.484	
	16		Positive sequence							
	17	Cos_{ϕ}		t1-10s to t1		0.9806	0.9882	0.9993	0.8831	

Page 119 of 188

	18			t1+100ms				0.62	0.76
During dip t1 to t2		Voltage	Line to	to t2- 20ms	p.u.	1.20	1.15	0.15	0.50
								0.62	0.76
	19	Line current	Phase 1	t1+60ms	p.u.	0.075	0.077		
	20		Phase 2						
	21		Phase 3					0.078	0.064
	22	Line current	Phase 1	t1+100ms	p.u.	0.063	0.051		
	23		Phase 2						
	24		Phase 3					0.074	0.053
	25	Activo	Total	t1+100ms		0.050	0.030	0.035	0.018
	26	power	Positive sequence	to t2- 20ms	p.u.				
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active	Positive sequence.	t2+3s to	p.u				
	29	power	Total	12+105		0.210	0.210	1.013	0.914
	39	Active power rising time	Positive sequence		S	0.099	0.070	0.123	0.126
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			-0.001	-0.001	-0.001	0.483
	33	Reactive power rising time	Positive sequence		S	0.099	0.070	0.123	0.126
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No		Ye	es	

Page 120 of 188

Page 121 of 188

Page 122 of 188

Page 123 of 188

Page 124 of 188

Page 126 of 188

Page 127 of 188

Page 128 of 188

Page 129 of 188

Page 130 of 188

Page 131 of 188

Page 132 of 188

Verification of dynamic network support								Р		
Short-circuited power at generator terminal [VA]			10К							
NS protection settings			See table 5.5 for detail.							
	No.	Parameter	Phase ref.	Phase ref. Time ref. unit Result						
General Info.	0	Test number				3.3	4.3	5.3	6.3	
	1	Date			dd.mm.yyyy	16-June-2020 to 22-June-2020				
	2	Time (start of test)			hh:mm:ss.f	See graph				
	3	Fault type (phase)				D1	D1	D1	D1	
	4	Setting voltage depth	Line to line		p.u.	0.50	0.85	1.25	1.20	
	5	Setting dip duration			ms	1500	60000	100	5000	
	6	Point of fault entry	Total		ms	20ms				
	7	Point of fault clearance	Total		ms	20ms				
	8	Fault duration in empty load test	Total		ms	1512.84	60020	100.11	5004.74	
	9	Voltage depth/height in empty load test	Total	t1+100ms to t2 and t1-10s to t1	p.u.	0.76	0.93	1.08	1.06	
						0.50	0.85	1.25	1.20	
						0.76	0.93	1.06	1.05	
	10		Positive sequence		p.u.	0.67	0.90	1.13	1.11	
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00	1.00	1.00	
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.					
	13	Active power	Total	t1-10s to t1	p.u.	0.882	1.014	1.013	1.015	
Before dip <t1< td=""><td>14</td><td>Positive sequence</td><td></td><td></td><td></td><td></td></t1<>	14		Positive sequence							
	15	Reactive power	Total	t1-10s to t1	p.u.	-0.485	0.000	0.000	-0.001	
	16		Positive sequence							
	17	Cos _φ		t1-10s to t1		0.8754	0.9993	0.9993	0.9993	

Page 133 of 188

	18		Phase 1	t1+100ms		0.76	0.93	1.08	1.06
During		Voltage	Phase 2	20ms	p.u.	0.50	0.85	1.25	1.20
			Phase 3			0.76	0.93	1.06	1.05
	19	Line current	Phase 1	t1+60ms	p.u.				
	20		Phase 2						
	21		Phase 3			0.036	0.080	0.066	0.066
t2	22	Line current	Phase 1	t1+100ms	p.u.				
	23		Phase 2						
	24		Phase 3			0.057	0.071	0.058	0.060
	25	Activo	Total	t1+100ms		0.006	0.007	0.020	0.020
	26	power	Positive sequence	20ms	p.u.				
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active	Positive sequence.	t2+3s to	p.u				
	29	power	Total	12+105	•	0.881	1.013	1.013	1.012
	39	Active power rising time	Positive sequence		S	0.149	0.120	0.120	0.126
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			-0.485	-0.001	-0.001	-0.001
	33	Reactive power rising time	Positive sequence		S	0.149	0.120	0.120	0.126
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No		Ye	es	

intertek Total Quality. Assured.

Page 134 of 188

Page 136 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

Page 137 of 188

Page 138 of 188

Page 140 of 188

intertek Total Quality. Assured.

Page 141 of 188

intertek Total Quality. Assured.

Page 142 of 188

Page 143 of 188

intertek Total Quality. Assured.

Page 144 of 188

Page 145 of 188

Page 146 of 188

Page 147 of 188

Verification of dynamic network support											
Short-circuited power at generator terminal [VA]			10К								
NS pr	otectio	on settings	See table 5.5 for detail.								
	No.	Parameter	Phase ref.	Time ref.	unit	Result					
	0	Test number				7.3	1.4	2.4	3.4		
	1	Date			dd.mm.yyyy	16-June-2020 to 22-June-2020					
	2	Time (start of test)			hh:mm:ss.f	See graph					
	3	Fault type (phase)				D1	D1	D1	D1		
	4	Setting voltage depth	Line to line		p.u.	1.15	0.15	0.50	0.50		
	5	Setting dip duration			ms	60000	150	1500	1500		
General Info.	6	Point of fault entry	Total		ms	20ms					
	7	Point of fault clearance	Total		ms	20ms					
	8	Fault duration in empty load test	Total		ms	60020	158.72	1512.84	1512.84		
	9	Voltage depth/height in empty load test	Total	t1+100ms to t2 and t1-10s to	p.u.	1.04	0.62	0.76	0.76		
						1.15	0.15	0.5	0.5		
				t1		1.04	0.62	0.76	0.76		
	10		Positive sequence		p.u.	1.08	0.46	0.67	0.67		
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00	1.00	1.00		
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.						
	13	A otivio	Total	14 40- 1-		1.014	1.014 0.210 0.207	0.207	0.207		
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1-10s to t1</td><td>p.u.</td><td></td><td></td><td></td><td></td></t1<>	14	power	Positive sequence	t1-10s to t1	p.u.						
	15	Popotivo	Total	t1 100 to		-0.001	0.000	0.483	-0.483		
	16	power	Positive sequence	t1-10s to t1	p.u.						
	17	Cos_{ϕ}		t1-10s to t1		0.9993	0.9878	0.3935	0.3931		

Page 148 of 188

	18		Phase 1	t1+100ms		1.04	0.62	0.76	0.76
		Voltage	Phase 2	to t2- 20ms	p.u.	1.15	0.15	0.50	0.50
			Phase 3			1.04	0.62	0.76	0.76
	19		Phase 1	t1+60ms					
	20	Line current	Phase 2		p.u.				
During dip t1 to	21		Phase 3			0.067	0.065	0.064	0.037
t2	22		Phase 1						
	23	Line current	Phase 2	t1+100ms	p.u.				
	24		Phase 3			0.057	0.066	0.068	0.052
	25	Activo	Total	t1+100ms		0.022	0.032	0.011	-0.001
	26	power	Positive sequence	to t2- 20ms	p.u.				
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active	Positive sequence.	t2+3s to	p.u				
	29	power	Total	t2+10s		1.014	0.210	0.207	0.207
	39	Active power rising time	Positive sequence		S	0.129	0.089	0.095	0.089
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			-0.001	-0.001	0.483	-0.482
	33	Reactive power rising time	Positive sequence		S	0.129	0.089	0.095	0.089
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No		Ye	es	

Page 149 of 188

Page 150 of 188

Page 151 of 188

Page 152 of 188

intertek

Page 153 of 188

intertek Total Quality. Assured.

Page 154 of 188

Report no. 200320118GZU-001

TRF No. VDE-AR-N 4105d

Page 155 of 188

Page 156 of 188

Page 157 of 188

Page 158 of 188

Page 159 of 188

intertek Total Quality. Assured.

Page 160 of 188

Page 161 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

Page 162 of 188

Verification of dynamic network support											
Short-circuited power at generator terminal [VA]			10K								
NS protection settings			See table 5.5 for detail.								
	No.	Parameter	Phase ref.	Time ref.	Fime ref. unit Result						
	0	Test number				4.4	5.4	6.4	7.4		
	1	Date			dd.mm.yyyy	16-June-2020 to 22-June-2020					
	2	Time (start of test)			hh:mm:ss.f		See	graph			
	3	Fault type (phase)				D1	D1	D1	D1		
	4	Setting voltage depth	Line to line		p.u.	0.85	1.25	1.20	1.15		
General Info.	5	Setting dip duration			ms	60000	100	5000	60000		
	6	Point of fault entry	Total		ms	20ms					
	7	Point of fault clearance	Total		ms	20ms					
	8	Fault duration in empty load test	Total		ms	60020	100.11	5004.74	60020		
	9	Voltage depth/height in empty load test	Total	t1+100ms to t2 and t1-10s to	p.u.	0.93	1.08	1.06	1.04		
						0.85	1.25	1.2	1.15		
				t1		0.93	1.06	1.05	1.04		
	10		Positive sequence		p.u.	0.9	1.13	1.11	1.08		
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00	1.00	1.00		
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.						
	13	Activo	Total	11 10a ta		0.210	0.210	0.210	0.210		
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1-105 to</td><td>p.u.</td><td></td><td></td><td></td><td></td></t1<>	14	power	Positive sequence	t1-105 to	p.u.						
	15	Boostivo	Total	t1 100 to		0.000	-0.001	0.000	-0.001		
	16	power	Positive sequence	t1	p.u.						
	17	Cos_{ϕ}		t1-10s to t1		0.9881	0.9876	0.9879	0.9880		

Page 163 of 188

	18		Phase 1	t1+100ms		0.93	1.08	1.06	1.04
		Voltage	Phase 2	to t2- 20ms	p.u.	0.85	1.25	1.20	1.15
			Phase 3			0.93	1.06	1.05	1.04
	19		Phase 1						
	20	Line current	Phase 2	t1+60ms	p.u.				
During	21		Phase 3			0.068	0.047	0.044	0.045
t2	22		Phase 1						
	23	Line current	Phase 2	t1+100ms	p.u.				
	24		Phase 3			0.062	0.037	0.039	0.041
	25	A ative	Total	t1+100ms		0.045	0.020	0.021	0.020
	26	power	Positive sequence	to t2- 20ms	p.u.				
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00	1.00	1.00
	28	Active	Positive sequence.	t2+3s to	p.u				
	29	power	Total	t2+10s	·	0.212	0.210	0.209	0.197
	39	Active power rising time	Positive sequence		S	0.099	0.083	0.091	0.100
After dip	31	Reactive power	Positive sequence	t2+3s to t2+10s	p.u.				
> t2	32		Total			-0.001	-0.001	-0.001	-0.001
	33	Reactive power rising time	Positive sequence		S	0.099	0.083	0.091	0.100
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No		١	⁄es	

intertek Total Quality. Assured.

Page 164 of 188

Total Quality. Assured. Page 165 of 188

Page 166 of 188

Page 167 of 188

Page 168 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

TRF No. VDE-AR-N 4105d

intertek

intertek

Page 170 of 188

intertek Total Quality. Assured.

Page 171 of 188

Page 172 of 188

Report no. 200320118GZU-001

intertek

Total Quality. Assured.

intertek Total Quality. Assured.

Page 173 of 188

Page 174 of 188

Page 175 of 188

Page 176 of 188

Verificatio	Verification of dynamic network support P									
Short- genera	Short-circuited power at generator terminal [VA]			ЗК						
NS pr	otectio	on settings	See table 5.5 for detail.							
	No.	Parameter	Phase ref.	Time ref.	unit	Re	sult			
	0	Test number				1	5.5			
	1	Date			dd.mm.yyyy	16-June-2020 t	o 22-June-2020			
	2	Time (start of test)			hh:mm:ss.f	See graph				
	3	Fault type (phase)				D2	D2			
	4	Setting voltage depth	Line to line		p.u.	0.15	1.25			
	5	Setting dip duration			ms	150	100			
General Info.	6	Point of fault entry	Total		ms	20ms				
	7	Point of fault clearance	Total		ms	20ms				
	8	Fault duration in empty load test	Total		ms	159.29	100.22			
	9	Voltage depth/height in empty		t1+100ms		0.15	1.25			
			Total	to t2 and t1-10s to	p.u.	0.62	1.06			
				t1		0.62	1.08			
	10	load test	Positive sequence		p.u.	0.46	1.13			
	11	Voltage	Line to neutral	t1-10s to t1	p.u.	1.00	1.00			
	12	Current	Positive sequence	t1-500ms to t1- 100ms	p.u.					
	13	Activo	Total	t1 100 to		1.013	1.014			
Before dip <t1< td=""><td>14</td><td>power</td><td>Positive sequence</td><td>t1-10s to t1</td><td>p.u.</td><td></td><td></td></t1<>	14	power	Positive sequence	t1-10s to t1	p.u.					
	15	Depativo	Total	14 40-1-		-0.001	-0.001			
	16	power	Positive sequence	t1-10s to	p.u.					
	17	Cos _φ		t1-10s to t1		0.9992	0.9992			
During	18	Voltago	Phase 1	t1+100ms	DU	0.15	1.25			
dip t1 to		Voltage	Phase 2	to t2-	p.u.	0.62	1.06			

Page 177 of 188

t2			Phase 3	20ms		0.62	1.08
	19		Phase 1				
	20	Line current	Phase 2	t1+60ms	p.u.	0.075	0.069
	21		Phase 3				
	22		Phase 1		p.u.		
	23	Line current	Phase 2	t1+100ms		0.075	0.043
	24		Phase 3				
	25	Activo	Total	t1+100ms		0.036	0.025
	26	power	Positive sequence	to t2- 20ms	p.u.		
	27	Voltage	Line to neutral	t2+3s to t2+10s	p.u.	1.00	1.00
	28	Active	Positive sequence.	t2+3s to t2+10s	p.u		
	29	power	Total			1.011	1.013
	39	Active power rising time	Positive sequence		S	0.122	0.112
After dip	31	Reactive	Positive sequence	t2+3s to	p.u.		
> t2	32	power	Total	12+105	•	-0.001	-0.001
	33	Reactive power rising time	Positive sequence		S	0.122	0.112
	34	PGU does not disconnect from grid till 60s after fault		t2 to t2+60s	Yes / No	Y	es

intertek Total Quality. Assured.

Page 178 of 188

Page 179 of 188

Page 180 of 188

intertek Total Quality. Assured.

Page 181 of 188

Report no. 200320118GZU-001

intertek Total Quality. Assured.

Page 182 of 188

Report no. 200320118GZU-001

Page 183 of 188

Report no. 200320118GZU-001

Page 184 of 188

Report no. 200320118GZU-001

E.7 Requirements for the test report for the NS protection

Requirements for the NS protection (Anforderungen an den NA-Schutz)							
Extract of the test report for NS protection (Auszug aus dem Prüfbericht für den NA-Schutz)							
NS protection as integrated NS protection (NA-Schutz als integrierter)							
Manufacturer: (Hergesteller)	Shenzhen SOFAR SOLAR Co., Ltd. 401, Building 4, AnTongDa Industrial Park, District 68, XingDong Community, XinAn Street, BaoAn District, Shenzhen, China						
Type of NS Protection: (Typ NA-Schutz)	Integrierter NA-Schutz						
Software Version:	V2.60						
Measurement Period: (Messzeitraum)	2020-04-27 bis 2020-08-17						
	Stirling generators, fuel cells (Stirlinggeneratoren, Brennstoffzellen) Synchronous and asynchronous generators with <i>P</i> n ≤ 50 kW coupled directly or via inverters (direkt oder über Umrichter gekoppelte Synchron- und Asynchrongeneratoren mit Pn ≤ 50 kW)			Inverter(s) (Umrichter)			
				Directly coupled synchronous and asynchronous generators with <i>P</i> n > 50 kW (direkt gekoppelte Synchron- und Asynchrongeneratoren mit Pn > 50 kW)			
Protective function (Schutzfunktion)	Set value (Einste Ilwert)	Tripping value (Auslösewe rt)	Tripping time NS protection * (Auslösezeit NA-Schutz*)	Set value (Einstellwer t)	Tripping value (Auslösewe rt)	Tripping time NS protection * (Auslösez eit NA- Schutz*)	
Rise-in-voltage protection (Spannungssteigerungsschu tz) U>>				1,25 * <i>U</i> n	1.249* <i>U</i> n	81.0ms	
Rise-in-voltage protection (Spannungssteigerungsschu tz) U >				1,10 * <i>U</i> n	1.10* <i>U</i> n	493s	
Voltage drop protection (Spannungsrückgangsschutz) U <				0,8 * <i>U</i> n	0.803* <i>U</i> n	3.06s	
Voltage drop protection (Spannungsrückgangsschutz) U <<				0,45* <i>U</i> n	0.453* <i>U</i> n	375ms	
Frequency decrease protection (Frequenzrückgangsschutz) f <				47,5 Hz	47.52Hz	97.0ms	
Frequency increase protection (Frequenzsteigerungsschutz) f >				51,5 Hz	51.49Hz	82.0ms	

Page 185 of 188

Report no. 200320118GZU-001

* The tripping time includes the period from the limit value violation U/f until the tripping signal to the interface switch.

When planning the power generation system, the response time of the interface switch shall be added to the maximum time value obtained as indicated above.

The disconnection time (sum of tripping time of the NS protection plus response time of the interface switch) shall not exceed 200 ms.

* Die Auslösezeit umfasst den Zeitraum von der Grenzwertverletzung *U*/*f* bis zum Auslösesignal an den Kuppelschalter.

Bei der Planung der Erzeugungsanlage ist die Eigenzeit des Kuppelschalters zum höchsten oben ermittelten Zeitwert zu addieren.

Die Abschaltzeit (Summe der Auslösezeit NA-Schutz zzgl. Eigenzeit des Kuppelschalters) darf 200 ms nicht überschreiten.

S For integrated NS protection (Bei integriertem NA-Schutz)					
Assigned to power generation unit of type	ME 3000SP				
zugeordnet zu Erzeugungseinheit Typ					
Type integrated interface switch	1, Hongfa HF161F-W				
Typ integrierter Kuppelschalter	2, Panasonic, ALFG2PF12				
Response time of interface switch for integrated NS					
protection	10				
Eigenzeit des Kuppelschalters bei integriertem NA-	IUMS				
Schutz					
Verification of the entire functional chain "integrated NS protection – interface switch" has resulted in					
successful disconnection.					
Die Überprüfung der Gesamtwirkungskette "integrierter NA-Schutz – Kuppelschalter" führte zu einer					
erfolgreichen Abschaltung.					

Page 186 of 188

Report no. 200320118GZU-001

Appended photos

Top view

Heatsink view

Page 187 of 188

Report no. 200320118GZU-001

Terminal view

Internal view

Page 188 of 188

Report no. 200320118GZU-001

Internal view

Internal view (End of Report)